On~the stability of $N$-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 132-142
Voir la notice de l'article provenant de la source Math-Net.Ru
For a large class of $N$-particle boson and fermion systems we prove the
existence of an increasing sequence of numbers $N_p$ such that the $N_p$ – particle
system is stable, $p=1,2,\dots$. In addition, for fermions
and any allowed symmetry type $\alpha$ sufficient condition is found for the
existence of an increasing sequence of numbers $N_s(\alpha)$ such that a system
of $N_s(\alpha)$ fermions has a bound state of symmetry $\alpha$.
@article{TMF_1988_76_1_a10,
author = {S. A. Vugal'ter and G. M. Zhislin},
title = {On~the stability of $N$-particle systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {132--142},
publisher = {mathdoc},
volume = {76},
number = {1},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a10/}
}
S. A. Vugal'ter; G. M. Zhislin. On~the stability of $N$-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 132-142. http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a10/