On the stability of $N$-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 132-142
Cet article a éte moissonné depuis la source Math-Net.Ru
For a large class of $N$-particle boson and fermion systems we prove the existence of an increasing sequence of numbers $N_p$ such that the $N_p$ – particle system is stable, $p=1,2,\dots$. In addition, for fermions and any allowed symmetry type $\alpha$ sufficient condition is found for the existence of an increasing sequence of numbers $N_s(\alpha)$ such that a system of $N_s(\alpha)$ fermions has a bound state of symmetry $\alpha$.
@article{TMF_1988_76_1_a10,
author = {S. A. Vugal'ter and G. M. Zhislin},
title = {On~the stability of $N$-particle systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {132--142},
year = {1988},
volume = {76},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a10/}
}
S. A. Vugal'ter; G. M. Zhislin. On the stability of $N$-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 76 (1988) no. 1, pp. 132-142. http://geodesic.mathdoc.fr/item/TMF_1988_76_1_a10/
[1] Perez J. F., Malto C. P., Coutinho F. A. B., J. Math. Phys., 26:9 (1985), 2262–2267 | DOI | MR
[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. t. 4. Analiz operatorov, Mir, M., 1982 | MR
[3] Ryuel D., Statisticheskaya mekhanika, Mir, M., 1971
[4] Sigalov A. G., Sigal I. I., TMF, 5:1 (1970), 73–93 | MR
[5] Vigner E., Teoriya grupp, IL, M., 1961
[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. t. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR
[7] Zhislin G. M., Izv. AN SSSR, ser. matem., 33 (1969), 590–649 | MR | Zbl
[8] Murnagan F., Teoriya predstavlenii grupp, IL, M., 1950