Connection between the Einstein–Maxwell equations and the self-duality equations for gauge fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 388-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analysis is made of the possibility of the existence of a one-to-one correspondence between the Einstein–Maxwell equations and the selfduality equations for static axisymmetric $SU(3)$ gauge fields in a gauge that reduces to the sigma-model representation on a noncompact symmetric space of the type AIII.
@article{TMF_1988_75_3_a6,
     author = {E. V. Doktorov and M. V. Milovanov},
     title = {Connection between the {Einstein{\textendash}Maxwell} equations and the self-duality equations for gauge fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--395},
     year = {1988},
     volume = {75},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a6/}
}
TY  - JOUR
AU  - E. V. Doktorov
AU  - M. V. Milovanov
TI  - Connection between the Einstein–Maxwell equations and the self-duality equations for gauge fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 388
EP  - 395
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a6/
LA  - ru
ID  - TMF_1988_75_3_a6
ER  - 
%0 Journal Article
%A E. V. Doktorov
%A M. V. Milovanov
%T Connection between the Einstein–Maxwell equations and the self-duality equations for gauge fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 388-395
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a6/
%G ru
%F TMF_1988_75_3_a6
E. V. Doktorov; M. V. Milovanov. Connection between the Einstein–Maxwell equations and the self-duality equations for gauge fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 388-395. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a6/

[1] Zakharov V. E., Takhtadzhyan L. A., TMF, 38:1 (1979), 26–35 | MR

[2] Forgács P., Horváth Z., Palla L., Phys. Rev. Lett., 45:7 (1980), 505–508 | DOI | MR

[3] Forgács P., Horváth Z., Palla L., Ann. Phys. (USA), 136:2 (1981), 371–397 | DOI | MR

[4] Ernst F. J., Phys. Rev., 168:9 (1968), 1415–1417 | DOI

[5] Alekseev G. A., Pisma v ZhETF, 32:4 (1980), 301–303 | MR

[6] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[7] Bais R. A., Sasaki R., Nucl. Phys., B227:1 (1983), 75–120 | DOI | MR

[8] Gürses M., Xanthopoulos B. C., Phys. Rev., D26:8 (1982), 1912–1915 | MR

[9] Eris A., Gürses M., Karasu A., J. Math. Phys., 25:5 (1984), 1489–1495 | DOI | MR

[10] Prasad M. K., Phys. Rev., D17:12 (1978), 3243–3246 | MR

[11] Mikhailov A. V., Yaremchuk A. J., Nucl. Phys., B202:3 (1982), 508–522 | DOI | MR

[12] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1968

[13] Mazur P. O., Acta Phys. Polon., B14:2 (1983), 219–233 | MR

[14] Kramer D., Neugebauer G., J. Phys. A, 14:9 (1981), L333–L338 | DOI | MR

[15] Vladimirov V. S., Volovich I. V., TMF, 62:1 (1985), 3–29 | MR | Zbl