Conformal invariance in gauge theories. III. Linear gravitation
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 378-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of the first two parts of the present study are generalized to the case of nonlinear gravitation. Under the assumption that the gauge tensor field of second rank transforms in accordance with a nonprincipal representation of the conformal group it is found that the conformally invariant two-point functions of this field have nonzero transverse part, and a nondegenerate conformally invariant Lagrangian is also constructed. It is shown that in the gauge-invariant sector this theory is identical with ordinary renormalizable linear gravitation. The global symmetry of the effective Lagrangian, which can be used to separate the subspace of transverse states and derive a Ward identity, is discussed.
@article{TMF_1988_75_3_a5,
     author = {R. P. Zaikov},
     title = {Conformal invariance in gauge theories. {III.~Linear} gravitation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {378--387},
     year = {1988},
     volume = {75},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a5/}
}
TY  - JOUR
AU  - R. P. Zaikov
TI  - Conformal invariance in gauge theories. III. Linear gravitation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 378
EP  - 387
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a5/
LA  - ru
ID  - TMF_1988_75_3_a5
ER  - 
%0 Journal Article
%A R. P. Zaikov
%T Conformal invariance in gauge theories. III. Linear gravitation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 378-387
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a5/
%G ru
%F TMF_1988_75_3_a5
R. P. Zaikov. Conformal invariance in gauge theories. III. Linear gravitation. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 378-387. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a5/

[1] Binegar B., Fronsdal C., Heidenreich W., J. Math. Phys., 24 (1983), 2828–2846 | DOI | MR

[2] Zaikov R. P., TMF, 65:1 (1985), 70–78 | MR

[3] Furlan P., Petkova V. B., Sotkov G. M., Todorov I. T., Rev. Nuovo Cim., 8 (1985), 1–50 | DOI | MR

[4] Petkova V. B., Sotkov G. M., Todorov I. T., Commun. Math. Phys., 97 (1985), 227–256 | DOI | MR | Zbl

[5] Bayen F., Flato M., Fronsdal C., Phys. Rev., D32 (1985), 2673–2689

[6] Todorov I. T., Conformal $\mathrm{QED}$, Preprint 4/85/EP, ISAS, Trieste, 1985

[7] Mack G., Salam A., Ann. Phys., 53 (1969), 174–202 | DOI | MR

[8] Bayer F., Flato M., J. Math. Phys., 17 (1976), 1112–1114 | DOI | MR

[9] Zaikov R. P., Conformal invariance in gauge theories. Yang–Mills theory, Preprint E2-83-44, JINR, Dubna, 1983 | MR

[10] Binegar B., Tronsdal C., Heidenreich W., Phys. Rev., D27 (1983), 2249–2261 | MR

[11] Sotkov G. M., Stoyanov D. Tz., J. Phys., A13 (1980), 2807–2816 ; A16 (1983), 2817–2826 | MR | MR

[12] Fradkin E. S., Kozhevnikov A. A., Palchik M. Ya., Commun. Math. Phys., 91 (1983), 529–541 | DOI | MR

[13] Palchik M. Ya., J. Phys., A16 (1983), 1523–1527

[14] Fradkin E. S., Palchik M. Ya., Class. Q. Grav., 1 (1984), 131–147 | DOI | MR

[15] Zaikov R. P., TMF, 67:1 (1986), 76–88 | MR

[16] Zaikov R. P., Let. Math. Phys., 11 (1986), 189–197 | DOI | MR

[17] Stelle K., Phys. Rev., D16 (1977), 953–969 | MR