Influence of relaxation on nonlinear waves in crystals
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 371-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A perturbation theory developed on the basis of the inverse scattering method is used to investigate the influence of transverse relaxation on a soliton of self-induced transparency in condensed media in the case of inhomogeneous broadening of the spectral line. It is shown that relaxation gives rise to excitation of a continuous spectrum of the scattering data of the auxiliary spectral problem and that this phenomenon leads to a change in the parameters of the nonlinear wave. Asymptotic expressions for the complex amplitude and energy and momentum of the extraordinary wave are determined. The parameters of a nonlinear wave propagating in a ruby crystal are calculated.
@article{TMF_1988_75_3_a4,
     author = {G. T. Adamashvili},
     title = {Influence of relaxation on nonlinear waves in crystals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {371--377},
     year = {1988},
     volume = {75},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a4/}
}
TY  - JOUR
AU  - G. T. Adamashvili
TI  - Influence of relaxation on nonlinear waves in crystals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 371
EP  - 377
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a4/
LA  - ru
ID  - TMF_1988_75_3_a4
ER  - 
%0 Journal Article
%A G. T. Adamashvili
%T Influence of relaxation on nonlinear waves in crystals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 371-377
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a4/
%G ru
%F TMF_1988_75_3_a4
G. T. Adamashvili. Influence of relaxation on nonlinear waves in crystals. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 371-377. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a4/

[1] McCall S. L., Hahn E. L., Phys. Rev., 183:2 (1969), 457–484 | DOI

[2] Agranovich V. M., Adamashvili G. T., Rupasov V. I., ZhETF, 80:5 (1981), 1746–1756

[3] Adamashvili G. T., Optika i spektroskopiya, 54:4 (1983), 668–672

[4] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[5] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[6] Kaup D. J., Phys. Rev., 16A (1977), 704–719 | DOI

[7] Newell A. C., Topics in modern physics. Solitons, eds. R. Bollough, P. Caudrey, Springer-Verlag, Berlin, 1980 | MR | Zbl

[8] Karpman V. I., Maslov E. N., ZhETF, 73:2 (1977), 537–559 | MR

[9] Adamashvili G. T., TMF, 57:1 (1983), 121–127 | MR

[10] Kaminskii A. A., Lazernye kristally, Nauka, M., 1975

[11] Agranovich V. M., Ginzburg V. L., Kristallooptika s uchetom prostranstvennoi dispersii i teoriya eksitonov, Nauka, M., 1979 | MR

[12] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR | Zbl

[13] Allen L., Eberli Dzh., Opticheskii rezonans i dvukhurovnevye atomy, Mir, M., 1978

[14] Poluektov I. A., Popov Yu. M., Roitberg V. S., UFN, 114:1 (1974), 97–129 | DOI | MR

[15] Adamashvili G. T., Phys. Lett., 95A:8 (1983), 439–442 | DOI