$1/N$ expansion in $U(N)\times U(k)$-invariant $N\times k$ matrix chiral models $(D=2,3)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 361-370 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A large class of complex $N\times k$ matrix chiral models that are exactly solvable in the limit $N\to\infty$ constructed. In the $N\to\infty$ the phase structure of $U(N)\times U(k)$-invariant models on the Stiefel manifolds $U(N)/U(N-k)$ is investigated in two-dimensional $(D=2)$ and three-dimensional $(D=3)$ space-time. It is shown that in these models dynamical formation of massive vector fields is possible. Three-dimensional gauge $U(N)/U(N-k)\times SU(k)$ and $U(N)/U(N-k)\times U(1)$ models are considered, and it is shown that in them formation of both massless and massive vector fields is possible.
@article{TMF_1988_75_3_a3,
     author = {A. V. Bratchikov and A. A. Deriglazov and I. V. Tyutin},
     title = {$1/N$~expansion in $U(N)\times U(k)$-invariant $N\times k$~matrix chiral models~$(D=2,3)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {361--370},
     year = {1988},
     volume = {75},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a3/}
}
TY  - JOUR
AU  - A. V. Bratchikov
AU  - A. A. Deriglazov
AU  - I. V. Tyutin
TI  - $1/N$ expansion in $U(N)\times U(k)$-invariant $N\times k$ matrix chiral models $(D=2,3)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 361
EP  - 370
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a3/
LA  - ru
ID  - TMF_1988_75_3_a3
ER  - 
%0 Journal Article
%A A. V. Bratchikov
%A A. A. Deriglazov
%A I. V. Tyutin
%T $1/N$ expansion in $U(N)\times U(k)$-invariant $N\times k$ matrix chiral models $(D=2,3)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 361-370
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a3/
%G ru
%F TMF_1988_75_3_a3
A. V. Bratchikov; A. A. Deriglazov; I. V. Tyutin. $1/N$ expansion in $U(N)\times U(k)$-invariant $N\times k$ matrix chiral models $(D=2,3)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 361-370. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a3/

[1] Brezin E., Hikami S., Zinn-Justin J., Nucl. Phys., B165 (1980), 528–544 | DOI

[2] Polyakov A. W., Phys. Lett., 59B:1 (1975), 79–81 | DOI | MR

[3] Brezin E., Zinn-Justin J., Le Guillon J. C., Phys. Rev., D14:10 (1976), 2615–2621

[4] Aref'eva I. Ya., Azakov S. I., Nucl. Phys., B162 (1980), 298–310 | DOI | MR

[5] Delduc F., Valent G., Nucl. Phys., B253 (1985), 494–516 | DOI | MR

[6] Bratchikov A. V., Tyutin I. V., Multiplikativnaya perenormirovka dvumernykh kiralnykh teorii, Preprint No 47, TF SO AN SSSR, Tomsk, 1986 | MR

[7] Belavin A. A., Polyakov A. M., Pisma v ZhETF, 22 (1975), 503–506

[8] Perelomov A. M., UFN, 134:4 (1981), 577–609 | DOI | MR

[9] Bardeen W. A., Lee B. W., Shrock R. E., Phys. Rev., D14:4 (1976), 985–1005

[10] Brezin E., Zinn-Justin J., Phys. Rev., B14:7 (1976), 3110–3120 | DOI

[11] Duane S., Nucl. Phys., B168 (1980), 32–44 | DOI | MR

[12] Boulware D. G., Grown L. S., Ann. Phys. (N. Y.), 138 (1982), 392–433 | DOI | MR

[13] Bratchikov A. V., Tyutin I. V., Izv. vuzov. Fizika, 1985, no. 7, 92–95 | MR

[14] Bratchikov A. V., Tyutin I. V., Dinamicheskoe obrazovanie massivnykh vektornykh polei v $O(N)\times O(k)$-invariantnykh $O(N)/O(N-k)$-modelyakh ($D=2$, $3$), Preprint No 32, TF SO AN SSSR, Tomsk, 1985

[15] Bratchikov A. V., Tyutin I. V., $1/N$-razlozhenie v $O(N)/O(N-k)\times O(k-p)\times O(p)$-modelyakh ($D=2$, $3$), Preprint No 48, TF SO AN SSSR, Tomsk, 1986 | MR