Random walks on a~lattice of obstacles
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 451-464

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective method is proposed for investigating the statistical characteristics of random walks associated with their topological state with respect to a regular lattice of obstacles. Such problems arise in the modeling of the behavior of macroscopic molecules in concentrated systems consisting of strongly entangled polymer chains. The method can be used, in particular, to calculate the change in the elasticity free energy when there is isotropic swelling of polymer networks.
@article{TMF_1988_75_3_a12,
     author = {E. A. Zheligovskaya and F. F. Ternovskii and A. R. Khokhlov},
     title = {Random walks on a~lattice of obstacles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {451--464},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a12/}
}
TY  - JOUR
AU  - E. A. Zheligovskaya
AU  - F. F. Ternovskii
AU  - A. R. Khokhlov
TI  - Random walks on a~lattice of obstacles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 451
EP  - 464
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a12/
LA  - ru
ID  - TMF_1988_75_3_a12
ER  - 
%0 Journal Article
%A E. A. Zheligovskaya
%A F. F. Ternovskii
%A A. R. Khokhlov
%T Random walks on a~lattice of obstacles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 451-464
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a12/
%G ru
%F TMF_1988_75_3_a12
E. A. Zheligovskaya; F. F. Ternovskii; A. R. Khokhlov. Random walks on a~lattice of obstacles. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 451-464. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a12/