Random walks on a~lattice of obstacles
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 451-464
Voir la notice de l'article provenant de la source Math-Net.Ru
An effective method is proposed for investigating the statistical
characteristics of random walks associated with their topological
state with respect to a regular lattice of obstacles. Such problems
arise in the modeling of the behavior of macroscopic molecules in
concentrated systems consisting of strongly entangled polymer chains.
The method can be used, in particular, to calculate the change in the
elasticity free energy when there is isotropic swelling of polymer networks.
@article{TMF_1988_75_3_a12,
author = {E. A. Zheligovskaya and F. F. Ternovskii and A. R. Khokhlov},
title = {Random walks on a~lattice of obstacles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {451--464},
publisher = {mathdoc},
volume = {75},
number = {3},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a12/}
}
TY - JOUR AU - E. A. Zheligovskaya AU - F. F. Ternovskii AU - A. R. Khokhlov TI - Random walks on a~lattice of obstacles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 451 EP - 464 VL - 75 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a12/ LA - ru ID - TMF_1988_75_3_a12 ER -
E. A. Zheligovskaya; F. F. Ternovskii; A. R. Khokhlov. Random walks on a~lattice of obstacles. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 451-464. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a12/