Structure of the equilibrium states of a class of dynamical systems associated with Lie–Poisson brackets
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 445-450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For Hamiltonian systems associated with Lie–Poisson brackets a study is made of the structure of states that satisfy the static form of the Kubo–Martin–Schwinger condition in the classical form. The Vlasov equation and the Euler equation for an idealincompressible fluid are considered as examples.
@article{TMF_1988_75_3_a11,
     author = {I. D. Chueshov},
     title = {Structure of the equilibrium states of a~class of dynamical systems associated with {Lie{\textendash}Poisson} brackets},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {445--450},
     year = {1988},
     volume = {75},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a11/}
}
TY  - JOUR
AU  - I. D. Chueshov
TI  - Structure of the equilibrium states of a class of dynamical systems associated with Lie–Poisson brackets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 445
EP  - 450
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a11/
LA  - ru
ID  - TMF_1988_75_3_a11
ER  - 
%0 Journal Article
%A I. D. Chueshov
%T Structure of the equilibrium states of a class of dynamical systems associated with Lie–Poisson brackets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 445-450
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a11/
%G ru
%F TMF_1988_75_3_a11
I. D. Chueshov. Structure of the equilibrium states of a class of dynamical systems associated with Lie–Poisson brackets. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 445-450. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a11/

[1] Gallavotti G., Verboven E., Nuovo Cim., 28B:1 (1975), 274–286 | DOI | MR

[2] Aizenman M., Gallavotti G., Goldstein S., Lebowitz J. L., Commun. Math. Phys., 48:1 (1976), 1–14 | DOI | MR

[3] Samarskii A. A., Diff. uravneniya, 16:11 (1980), 1925–1935 | MR

[4] Arsenev A. A., Matem. sb., 121:3 (1983), 297–309 | MR

[5] Chueshov I. D., Uravnenie Khopfa dlya dinamicheskoi sistemy s beskonechnomernym fazovym prostranstvom i evklidova teoriya polya, Preprint ITF-84-184R, ITF AN USSR, Kiev, 1985

[6] Chueshov I. D., Matem. sb., 130:3 (1986), 394–403 | MR | Zbl

[7] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Sovr. probl. matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179–284 | MR | Zbl

[8] Marsden J. E., Canad. Math. Bull., 25:2 (1982), 129–142 | DOI | MR | Zbl

[9] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, Vyp. 4, Fizmatgiz, M., 1961 | MR

[10] Boldrighini C., Frigio S., Commun. Math. Phys., 72:1 (1980), 55–76 | DOI | MR | Zbl

[11] Albeverio S., Ribeiro de Faria M., Hoegh-Krohn R., J. Stat. Phys., 20:6 (1979), 585–595 | DOI | MR

[12] Shrypnik W. J., Configurational differential boundary condition for the state of infinite system in classical statistical mechanics, Preprint JTP-80-7E, JTP Acad. Sci. Ukr. SSR, Kiev, 1980