Quantum few-body problem with internal structure. I. Two-body problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 431-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The methods of the theory of extensions to an auxiliary Hilbert space are used to construct in the two-particle sector a scattering theory for particles possessing internal structure. The analytic properties of the amplitudes of resonance scattering and Green's functions corresponding to a class of singular energy-dependent interactions are investigated.
@article{TMF_1988_75_3_a10,
     author = {Yu. A. Kuperin and K. A. Makarov and S. P. Merkur'ev and A. K. Motovilov and B. S. Pavlov},
     title = {Quantum few-body problem with internal structure. {I.~Two-body} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {431--444},
     year = {1988},
     volume = {75},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a10/}
}
TY  - JOUR
AU  - Yu. A. Kuperin
AU  - K. A. Makarov
AU  - S. P. Merkur'ev
AU  - A. K. Motovilov
AU  - B. S. Pavlov
TI  - Quantum few-body problem with internal structure. I. Two-body problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 431
EP  - 444
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a10/
LA  - ru
ID  - TMF_1988_75_3_a10
ER  - 
%0 Journal Article
%A Yu. A. Kuperin
%A K. A. Makarov
%A S. P. Merkur'ev
%A A. K. Motovilov
%A B. S. Pavlov
%T Quantum few-body problem with internal structure. I. Two-body problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 431-444
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a10/
%G ru
%F TMF_1988_75_3_a10
Yu. A. Kuperin; K. A. Makarov; S. P. Merkur'ev; A. K. Motovilov; B. S. Pavlov. Quantum few-body problem with internal structure. I. Two-body problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 3, pp. 431-444. http://geodesic.mathdoc.fr/item/TMF_1988_75_3_a10/

[1] Narodetskii I. M., Konspekty lektsii III Vsesoyuznoi shkoly po malochastichnym i kvark-adronnym sistemam, In-t fiziki AN Lit. SSR, Vilnyus, 1986, 116–163

[2] Kerbikov B. O., Quantum Mechanics of a System with Confinement, Preprint ITEP-58, ITEP, M., 1985

[3] Abdurakhmanov A., Akhmadkhadzhaev B., Zubarev A. L., Irgaziev B. F., Yadernaya zadacha trekh tel i potentsialy, zavisyaschie ot energii, Preprint ITF-85-76R, ITF AN USSR, Kiev, 1985 | MR

[4] Orlowski M., Helv. Phys. Acta, 56 (1983), 1053–1078

[5] Schmid E., The Problem of Using Energy-dependent Nucleon-Nucleon Potentials in Nuclear Physics, Preprint Univer. Tübingen, FRG, 1986

[6] Adamyan V. M., Pavlov B. S., Zap. nauchn. semin. LOMI, 149, 1986, 7–23 | MR

[7] Pavlov B. S., TMF, 59:3 (1984), 345–353 | MR

[8] Pavlov B. S., Faddeev M. D., Zap. nauchn. semin. LOMI, 126, 1983, 156–169 | MR

[9] Kuperin Yu. A., Makarov K. A., Pavlov B. S., TMF, 63:1 (1985), 78–87 | MR

[10] Kuperin Yu. A., Makarov K. A., Pavlov B. S., TMF, 69:1 (1986), 100–114 | MR

[11] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya v sistemakh neskolkikh chastits, Nauka, M., 1985 | MR

[12] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[13] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR