Spontaneous compactification from the point of view of dimensional reduction of gauge fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 255-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The connection between dimensional reduction and spontaneous compactification is studied. It is shown that for symmetric internal spaces the Higgs vacuum of the reduced theory corresponds to a multidimensional field configuration satisfying the condition of parallelizability, a condition that is stronger than the Einstein–Yang–Mills equations and leads to spontaneous compactification. Explicit expressions are given for the solutions of the spontaneous compactification equations in the case of the internal space $CP^m$.
@article{TMF_1988_75_2_a9,
     author = {I. P. Volobuev and Yu. A. Kubyshin},
     title = {Spontaneous compactification from the point of view of dimensional reduction of gauge fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {255--266},
     year = {1988},
     volume = {75},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a9/}
}
TY  - JOUR
AU  - I. P. Volobuev
AU  - Yu. A. Kubyshin
TI  - Spontaneous compactification from the point of view of dimensional reduction of gauge fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 255
EP  - 266
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a9/
LA  - ru
ID  - TMF_1988_75_2_a9
ER  - 
%0 Journal Article
%A I. P. Volobuev
%A Yu. A. Kubyshin
%T Spontaneous compactification from the point of view of dimensional reduction of gauge fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 255-266
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a9/
%G ru
%F TMF_1988_75_2_a9
I. P. Volobuev; Yu. A. Kubyshin. Spontaneous compactification from the point of view of dimensional reduction of gauge fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 255-266. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a9/

[1] Forgacs P., Manton N. S., Commun. Math. Phys., 72:1 (1980), 15–34 | DOI | MR

[2] Coquereaux R., Jadezyk A., Commun. Math. Phys., 90:1 (1983), 79–100 | DOI | MR | Zbl

[3] Volobuev I. P., Rudolf G., TMF, 62:3 (1985), 388–399 | MR | Zbl

[4] Cremmer E., Scherk J., Nucl. Phys., B118:1/2 (1977), 61–75 | DOI | MR

[5] Luciani I.-F., Nucl. Phys., B135:1 (1977), 111–130 | MR

[6] Salam A., Strathdee J., Ann. Phys., 141:2 (1982), 316–352 | DOI | MR

[7] Randjbar-Daemi S., Percacci R., Phys. Lett., 117B:1–2 (1982), 41–44 | DOI | MR

[8] Volkov D. V., Tkach V. I., Pisma v ZhETF, 32:11 (1980), 681–684; ТМФ, 51:2 (1982), 171–177 ; Волков Д. В., Сорокин Д. П., Ткач В. И., ТМФ, 61:2 (1984), 241–253 | MR | Zbl | MR | Zbl

[9] Volobuev I. P., Kubyshin Yu. A., TMF, 68:2 (1986), 225–235 | MR | Zbl

[10] Volobuev I. P., Kubyshin Yu. A., TMF, 68:3 (1986), 368–380 | MR | Zbl

[11] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[12] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981 | MR

[13] Schwarz A. S., Commun. Math. Phys., 56:1 (1977), 79–86 | DOI | MR | Zbl

[14] Pilch K., Schellekens A. N., Nucl. Phys., B256:1 (1985), 109–129 | DOI | MR

[15] Coleman S., “Classical lumps and their quantum descendants”, New Phenomena in Subnuclear Physics, Proc. of the 1975 Intern. School of Subnuclear Physics. Part A, ed. A. Zichichi, Plenum Press, N. Y.–London, 1977, 297–421 | DOI | MR

[16] Dynkin E. B., Matem. sb., 30:2 (1952), 349–462 | MR | Zbl

[17] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[18] Randjbar-Daemi S., Salam A., Strathdee I., Nucl. Phys., B214:3 (1983), 491–512 ; Schellekens A. N., Nucl. Phys., B248:3 (1984), 706–726 | DOI | MR | DOI | MR

[19] Duff M. J., Nilson B. E. W., Pope C. N., Phys. Rept., 130:1–2 (1986), 1–142 | DOI | MR

[20] Coquereaux R., Jadczyk A., Consistency of the $G$-invariant Kaluza–Klein scheme, Preprint TH 4305/85, CERN, Geneva, 1985 | MR