Borel summation of divergent series in field theory and Wynn's $\varepsilon$ algorithm
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 234-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first confluent form of Wynn's $\varepsilon$ algorithm is used in the Borel summation of some divergent perturbation-theory series that satisfy a strong asymptotic condition. The summation procedure reduces to the calculation of a sequence of ratios of Hankel functional determinants composed of a Borel integral and its derivatives and can be regarded as an alternative to the Padé and Padé–Borel methods. It admits a simple generalization to the summation of multiple series. The perturbation series for the ground-state energy of the anharmonic oscillator, Yukawa potential, and charmonium potential are analyzed; the critical exponents of the $O(n)$-symmetric $\varphi^4$ theories (models of phase transitions) for $n=0,1,2,3$ and the dilute Ising model are determined.
@article{TMF_1988_75_2_a7,
     author = {I. O. Maier},
     title = {Borel summation of divergent series in field theory and {Wynn's~}$\varepsilon$ algorithm},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--244},
     year = {1988},
     volume = {75},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a7/}
}
TY  - JOUR
AU  - I. O. Maier
TI  - Borel summation of divergent series in field theory and Wynn's $\varepsilon$ algorithm
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 234
EP  - 244
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a7/
LA  - ru
ID  - TMF_1988_75_2_a7
ER  - 
%0 Journal Article
%A I. O. Maier
%T Borel summation of divergent series in field theory and Wynn's $\varepsilon$ algorithm
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 234-244
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a7/
%G ru
%F TMF_1988_75_2_a7
I. O. Maier. Borel summation of divergent series in field theory and Wynn's $\varepsilon$ algorithm. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 234-244. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a7/

[1] Zinn-Justin J., Phys. Rep., 70:1 (1981), 109–167 | DOI | MR

[2] Bender C. M., Wu T. T., Phys. Rev., 184:5 (1969), 1231–1260 | DOI | MR

[3] Lipatov L. N., ZhETF, 72:2 (1977), 411–427 | MR

[4] Brézin E., Le Guillou J. C., Zinn-Justin J., Phys. Rev., D15:6 (1977), 1544–1557 | MR

[5] Loeffel J. J., Martin A., Simon B., Wightman A. S., Phys. Lett., 30B:9 (1969), 656–658 | DOI

[6] Vainberg V. M., Eletskii V. L., Popov V. S., ZhETF, 81:5 (1981), 1567–1582

[7] Graffi S., Grecchi V., Simon B., Phys. Lett., 32B:7 (1970), 631–634 | DOI | MR

[8] Baker J. A., Jr., Nickel B. G., Green M. S., Meiron D. I., Phys. Rev. Lett., 36:23 (1976), 1351–1354 | DOI

[9] Baker G. A., Jr., Nickel B. G., Meiron D. I., Phys. Rev., B17:3 (1978), 1365–1374 | DOI

[10] Le Guillou J. C., Zinn-Justin J., Phys. Rev. Lett., 39:2 (1977), 95–98 | DOI | MR

[11] Vladimirov A. A., Kazakov D. I., Tarasov O. V., ZhETF, 77:3 (1979), 1035–1045 | MR

[12] Gorishny S. G., Larin S. A., Tkachov F. V., Phys. Lett., 101A:3 (1984), 120–123 | DOI

[13] Le Guillou J. C., Zinn-Justin J., J. Physique. Lett., 46:4 (1985), L137–L141 | DOI

[14] Jug G., Phys. Rev., B27:1 (1983), 609–612 | DOI

[15] Maier I. O., Sokolov A. I., FTT, 26:11 (1984), 3454–3456

[16] Chisholm J. S. R., Math. Comp., 27:124 (1973), 841–848 | DOI | MR | Zbl

[17] Sokolov A. I., Shalaev B. N., FTT, 23:7 (1981), 2058–2063

[18] Wynn P., Arch. Rat. Mech. Anal., 28:2 (1968), 83–148 | DOI | MR | Zbl

[19] Lovitch L., Marziani M. F., Nuovo Cim., 76A:4 (1983), 615–626 | DOI

[20] Marziani M. F., J. Phys. A: Math. Gen., 17:3 (1984), 547–557 | DOI | MR | Zbl

[21] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951

[22] Brezinski C., Accélération de la Convergence en Analyse Numérique, Lecture Notes in Mathematics, 584, Springer Verlag, Berlin–Heidelberg–N. Y., 1977 | DOI | MR | Zbl

[23] Marziani M. F., Lett. Nuovo Cim., 37:3 (1983), 124–128 | DOI | MR

[24] Baker G. A., Jr., Essentials of Padé Approximants, Academic Press, N. Y., 1975, P. 110–117. | MR

[25] Eletsky V. L., Popov V. S., Weinberg V. M., Phys. Lett., 84A:5 (1981), 235–238 | DOI

[26] Čižek J., Vrscay E. R., Int. J. Quantum Chem., 21:1 (1982), 27–68 | DOI

[27] Le Guillou J. C., Zinn-Justin J., Phys. Rev., B21:9 (1980), 3976–3998 | DOI | Zbl

[28] Harris A. B., J. Phys. C: Solid State, 7:9 (1974), 1671–1692 | DOI

[29] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980, S. 198–228.

[30] Popov V. S., Eletskii V. L., Turbiner A. V., ZhETF, 74:2 (1978), 445–465 | MR