Massive Gross–Neveu model in the leading order of the $1/N$ expansion. Allowance for the temperature and the chemical potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 226-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The massive Gross–Neveu model is treated self-consistently in the leading order of the $1/N$ expansion. The properties of the model when the temperature and the chemical potential are included are studied. It is shown that there exists a critical value of the chemical potential at which the effective mass of the fermion abruptly changes its value.
@article{TMF_1988_75_2_a6,
     author = {K. G. Klimenko},
     title = {Massive {Gross{\textendash}Neveu} model in the leading order of the~$1/N$ expansion. {Allowance} for the temperature and the chemical potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--233},
     year = {1988},
     volume = {75},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a6/}
}
TY  - JOUR
AU  - K. G. Klimenko
TI  - Massive Gross–Neveu model in the leading order of the $1/N$ expansion. Allowance for the temperature and the chemical potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 226
EP  - 233
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a6/
LA  - ru
ID  - TMF_1988_75_2_a6
ER  - 
%0 Journal Article
%A K. G. Klimenko
%T Massive Gross–Neveu model in the leading order of the $1/N$ expansion. Allowance for the temperature and the chemical potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 226-233
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a6/
%G ru
%F TMF_1988_75_2_a6
K. G. Klimenko. Massive Gross–Neveu model in the leading order of the $1/N$ expansion. Allowance for the temperature and the chemical potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a6/

[1] Gross D. J., Neveu A., Phys. Rev., D10:10 (1974), 3235–3253

[2] Dashen R. F., Hasslacher B., Neveu A., Phys. Rev., D12:8 (1975), 2443–2458 | MR

[3] Jacobs L., Phys. Rev., D10:12 (1974), 3956–3961 | MR

[4] Dashen R. F., Ma S., Rajarman R., Phys. Rev., D11:6 (1975), 1499–1508 ; Harrington B. I., Yildiz A., Phys. Rev., D11:6 (1975), 1705–1707 ; Dittrich W., Englert B.-G., Nucl. Phys., B179:1 (1981), 85–105 ; Kawati S., Konisi G., Miyata H., Phys. Rev., D28:6 (1983), 1537–1541 ; Fedyanin V. K., Osipov V. A., The effects due to finite temperature and chemical potential in two-dimensional field theory models and polyacetylene, Preprint E 17-85-629, JINR, Dubna, 1985 | MR | DOI | MR | MR

[5] Klimenko K. G., $1/N$-razlozhenie v odnoi modeli s neskolkimi konstantami svyazi, Preprint IFVE 85-29, IFVE, Serpukhov, 1985; ТМФ, 66:3 (1986), 381–391 | MR

[6] Klimenko K. G., Fazovye perekhody v $O(N)$-modeli s neskolkimi konstantami svyazi, Preprint IFVE 86-51, IFVE, Serpukhov, 1986

[7] Feldman J., Magnen J., Rivassean V., Sénéor R., Phys. Rev. Lett., 54:20 (1985), 1479–1481 ; Commun. Math. Phys., 103:1 (1986), 67–103 | DOI | MR | DOI | Zbl

[8] Abarbanel H. D. I., Nucl. Phys., B130:1 (1977), 29–37 | DOI | MR

[9] Lee S. Y., Kuo T. K., Gavrielides A., Phys. Rev., D12:8 (1975), 2249–2253