Quantization in the neighborhood of a~classical solution in the theory of a~Fermi field
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 218-225
Voir la notice de l'article provenant de la source Math-Net.Ru
The quantization of a Fermi–Bose field system in the neighborhood
of a classical solution of the equations of motion that contains
both bosonic and spinor components is considered. The latter is
regarded as an absolutely anticommuting (Grassmann) component of a fermion field. On account of the transport of the fermion number,
such an object mixes the fermionic and bosonic and fermionic and
antifermionic degrees of freedom already at the level of the
single-particle states (in the approximation of quadratic forms).
Explicit expressions are obtained for the operator of the $S$ matrix,
which describes such transport processes, and the total Hamiltonian
and total fermion charge of the system in this approximation.
@article{TMF_1988_75_2_a5,
author = {K. A. Sveshnikov},
title = {Quantization in the neighborhood of a~classical solution in the theory of {a~Fermi} field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {218--225},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a5/}
}
TY - JOUR AU - K. A. Sveshnikov TI - Quantization in the neighborhood of a~classical solution in the theory of a~Fermi field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 218 EP - 225 VL - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a5/ LA - ru ID - TMF_1988_75_2_a5 ER -
K. A. Sveshnikov. Quantization in the neighborhood of a~classical solution in the theory of a~Fermi field. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 218-225. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a5/