Phonon excitations in multicomponent amorphous solids
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 306-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of two-time temperature-dependent Green's functions is used to investigate phonon excitations in multicomponent amorphous solids. The equation obtained for the energy spectrum of the phonon excitations takes into account the damping associated with scattering of phonons by structure fluctuations. The quasicrystal approximation is considered, and as an example explicit expressions are obtained for the case of a two-component amorphous solid for the frequencies of the acoustical and optical modes and for the longitudinal and transverse velocities of sound. The damping is investigated.
@article{TMF_1988_75_2_a14,
     author = {I. A. Vakarchuk and V. M. Migal' and V. M. Tkachuk},
     title = {Phonon excitations in multicomponent amorphous solids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {306--315},
     year = {1988},
     volume = {75},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a14/}
}
TY  - JOUR
AU  - I. A. Vakarchuk
AU  - V. M. Migal'
AU  - V. M. Tkachuk
TI  - Phonon excitations in multicomponent amorphous solids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 306
EP  - 315
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a14/
LA  - ru
ID  - TMF_1988_75_2_a14
ER  - 
%0 Journal Article
%A I. A. Vakarchuk
%A V. M. Migal'
%A V. M. Tkachuk
%T Phonon excitations in multicomponent amorphous solids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 306-315
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a14/
%G ru
%F TMF_1988_75_2_a14
I. A. Vakarchuk; V. M. Migal'; V. M. Tkachuk. Phonon excitations in multicomponent amorphous solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 306-315. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a14/

[1] Takeno S., Goda M., Progr. Theor. Phys., 45:2 (1971), 331–352 | DOI

[2] Zubarev D. N., UFN, 71:1 (1960), 71–116 | DOI | MR

[3] Böttger H., Phys. Stat. Sol. (b), 59:2 (1973), 517–523 | DOI

[4] Kleinert P., Leihkauf R., Phys. Stat. Sol. (b), 97:2 (1980), 491–499 | DOI

[5] Rowlands G., Phys. Stat. Sol. (b), 107:1 (1981), 157–163 | DOI

[6] Hafner J., Phys. Rev., B27:2 (1983), 678–695 | DOI

[7] Hafner J., J. Phys. C: Solid State Phys., 16:30 (1983), 5773–5792 | DOI

[8] Hafner J., J. Non-Cryst. Sol., 61–62:1 (1984), 523–528 | DOI

[9] Bhatia A. B., Singh R. N., Phys. Rev., B31:8 (1985), 4751–4758 | DOI | MR

[10] Yamamoto R., Michara T., Haga K., Doyama M., Proc. 4 Int. Conf. Rapid. Quench. Metals, V. 1 (Sendai, Aug. 24–28, 1981), Sendai, 1982, 403–406

[11] Suck J.-B., Rudin H., Güntherodt H.-J., Beck H., Phys. Rev. Lett., 50:1 (1983), 49–52 | DOI

[12] Buchenau U., Z. Phys., B58 (1985), 181–186 | DOI

[13] Kaneyoshi T., J. Phys. C: Solid State Phys., 5:24 (1972), 3504–3520 | DOI

[14] Zaiman Dzh., Modeli besporyadka, Mir, M., 1982

[15] Davydov A. S., Teoriya tverdogo tela, Nauka, M., 1976 | Zbl

[16] Zaiman D., Printsipy teorii tverdogo tela, Mir, M., 1974

[17] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[18] Akhiezer A. I., Berestetskii V. B., Kvantovaya elektrodinamika, Nauka, M., 1981 | MR