Interaction range perturbation theory for three-particle problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 275-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range $r$, and the corrections of order $r\ln r$, $r$, and $r^2\ln^2r$ are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established.
@article{TMF_1988_75_2_a11,
     author = {I. V. Simenog and D. V. Shapoval},
     title = {Interaction range perturbation theory for three-particle problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {275--287},
     year = {1988},
     volume = {75},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a11/}
}
TY  - JOUR
AU  - I. V. Simenog
AU  - D. V. Shapoval
TI  - Interaction range perturbation theory for three-particle problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 275
EP  - 287
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a11/
LA  - ru
ID  - TMF_1988_75_2_a11
ER  - 
%0 Journal Article
%A I. V. Simenog
%A D. V. Shapoval
%T Interaction range perturbation theory for three-particle problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 275-287
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a11/
%G ru
%F TMF_1988_75_2_a11
I. V. Simenog; D. V. Shapoval. Interaction range perturbation theory for three-particle problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 275-287. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a11/

[1] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya v sistemakh neskolkikh chastits, Nauka, M., 1985 | MR

[2] Skornyakov G. V., Ter-Martirosyan K. A., ZhETF, 31:5(11) (1956), 775–790 | Zbl

[3] Danilov G. S., ZhETF, 40:2 (1961), 498–507 | MR | Zbl

[4] Minlos R. A., Faddeev L. D., ZhETF, 41:6(12) (1961), 1850–1851 | MR

[5] Danilov G. S., ZhETF, 43:4(10) (1962), 1424–1435

[6] Efimov V., YaF, 12:5 (1970), 1080–1090

[7] Efimov V., Nucl. Phys., A362:1 (1981), 45–70 | DOI

[8] Simenog I. V., Few-Body Problems in Physics, Proc. of the Ninth European Conf. on Few-Body Problems in Physics, eds. L. D. Faddeev, T. I. Kopaleishvili, World Scientific, Singapore–Philadelphia, 1984, 332–339

[9] Grinyuk B. E., Simenog I. V., Modelno-nezavisimoe reshenie zadachi $nd$-rasseyaniya v kvartetnom sostoyanii, Preprint ITF-84-113R, ITF, Kiev, 1984

[10] Thomas L. H., Phys. Rev., 47:12 (1935), 903–910 | DOI

[11] Thomas L. H., Phys. Rev., D30:6 (1984), 1233–1237 | MR

[12] Efimov V., YaF, 29:4 (1979), 1058–1069

[13] Simenog I. V., Sitnichenko A. I., DAN USSR. Ser. A, 1981, no. 11, 74–77

[14] Simenog I. V., Shapoval D. V., YaF, 43:3 (1986), 554–558

[15] Efimov V., Tkachenko E. G., Phys. Lett., 157B:2–3 (1985), 108–114 | DOI

[16] Simenog I. V., Sitnichenko A. I., Shapoval D. V., O razlozhenii effektivnogo radiusa dlya dubletnogo $nd$-rasseyaniya, Preprint ITF-85-143R, ITF, Kiev, 1986; ЯФ, 45:1 (1987), 60–66