Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 267-274

Voir la notice de l'article provenant de la source Math-Net.Ru

A self-consistent system of maps for the analysis of spatial structures and their spectrum of small vibrations in a quantum chain of atoms in an external field at finite temperatures is derived. A numerical analysis of random structures and their stability is made. The local nature of the appearance of low-frequency vibrations is demonstrated.
@article{TMF_1988_75_2_a10,
     author = {V. V. Beloshapkin and G. P. Berman and A. G. Tret'yakov},
     title = {Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {267--274},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/}
}
TY  - JOUR
AU  - V. V. Beloshapkin
AU  - G. P. Berman
AU  - A. G. Tret'yakov
TI  - Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 267
EP  - 274
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/
LA  - ru
ID  - TMF_1988_75_2_a10
ER  - 
%0 Journal Article
%A V. V. Beloshapkin
%A G. P. Berman
%A A. G. Tret'yakov
%T Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 267-274
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/
%G ru
%F TMF_1988_75_2_a10
V. V. Beloshapkin; G. P. Berman; A. G. Tret'yakov. Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/