Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 267-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A self-consistent system of maps for the analysis of spatial structures and their spectrum of small vibrations in a quantum chain of atoms in an external field at finite temperatures is derived. A numerical analysis of random structures and their stability is made. The local nature of the appearance of low-frequency vibrations is demonstrated.
@article{TMF_1988_75_2_a10,
     author = {V. V. Beloshapkin and G. P. Berman and A. G. Tret'yakov},
     title = {Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {267--274},
     year = {1988},
     volume = {75},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/}
}
TY  - JOUR
AU  - V. V. Beloshapkin
AU  - G. P. Berman
AU  - A. G. Tret'yakov
TI  - Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 267
EP  - 274
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/
LA  - ru
ID  - TMF_1988_75_2_a10
ER  - 
%0 Journal Article
%A V. V. Beloshapkin
%A G. P. Berman
%A A. G. Tret'yakov
%T Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 267-274
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/
%G ru
%F TMF_1988_75_2_a10
V. V. Beloshapkin; G. P. Berman; A. G. Tret'yakov. Self-consistent description of spatial structures in one-dimensional quantum systems at finite temperatures. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/TMF_1988_75_2_a10/

[1] Aubry S., Solitons and Condensed Matter Physics, eds. Bishop A. R., Schneider T., N.-Y., 1979, 264–277 | MR

[2] Sinai Ya. G., ZhETF, 83:3 (1982), 1223–1231 | MR

[3] Belobrov P. I., Beloshapkin V. V., Zaslavskii G. M., Tretyakov A. G., ZhETF, 87:1 (1984), 310–322

[4] Bak P., Rep. Phys., 45 (1982), 587–629 | DOI | MR

[5] Peyrard M., Aubry S., J. Phys., C16 (1983), 1593–1607

[6] Aubry S., J. Phys., 44 (1983), 147–162 | DOI | MR

[7] Pokrovsky V. L., J. Phys., 42 (1981), 761–766 | DOI | MR

[8] Aubry S., Le Daeron P. Y., Physica, D8 (1983), 381–422 | MR | Zbl

[9] Jensen M., Bak P., Popielewicz, J. Phys., A16 (1983), 4369–4377

[10] Willis C., El-Batanoung M., Stancioff P., Phys. Rev., B33 (1986), 1904–1911 | DOI

[11] Stancioff P., Willis C., El-Batanoung M., Burdick S., Phys. Rev., B23 (1986), 1912–1920 | DOI

[12] Aksenov V. L., Bobeth M., Phys. Stat. Sol. (b), 128 (1985), K105–109 | DOI

[13] Aksenov V. L., Bobet M., Shraiber Yu., TMF, 64 (1985), 186–195

[14] Mazzucchelli G. M., Zeyher R., Z. Phys. B. Condensed Matter., 62 (1986), 367–379 | DOI

[15] Beloshapkin V. V., Berman G. P., Iomin A. M., Tretyakov A. G., ZhETF, 90 (1986), 2077–2089

[16] Frenkel Ya. I., Kontorova T. A., ZhETF, 8 (1938), 364–370

[17] Plakida N. M., Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1983, S. 205. | MR

[18] Gillis N. S., Werthamer N. R., Koehler T. P., Phys. Rev., 165 (1968), 951–959 | DOI

[19] Chirikov B. V., Phys. Rep., 52 (1979), 263–379 | DOI | MR

[20] Beloshapkin V. V., Zaslavskii G. M., Tretyakov A. G., FNT, 12:7 (1986), 733–741

[21] Wiegman P. B., J. Phys., C11 (1978), 1583–1598

[22] Pokrovsky V. L., Talapov A. L., Theory of Incommensurate Crystals, Pergamon Press, Amsterdam, 1984, P. 227.