Solution of the Kasteleyn model on a~half-plane
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 114-123
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of the Kasteleyn model, which is the simplest model of
the phase transition of two-dimensional crystalline systems into a homogeneous incommensurate phase. An exact solution of this model on
the half-plane is obtained. A dependence of the thermodynamic properties
of the system of domain walls on the distance to the boundary is found.
At small deviations $\tau$ from the critical temperature, the density of the
domain walls behaves as $\tau^{3/2}$ near the boundary and $\tau^{1/2}$ far from it.
			
            
            
            
          
        
      @article{TMF_1988_75_1_a9,
     author = {E. I. Kornilov and V. B. Priezzhev},
     title = {Solution of the {Kasteleyn} model on a~half-plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {114--123},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a9/}
}
                      
                      
                    E. I. Kornilov; V. B. Priezzhev. Solution of the Kasteleyn model on a~half-plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 114-123. http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a9/
