Solution of the Kasteleyn model on a half-plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 114-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the Kasteleyn model, which is the simplest model of the phase transition of two-dimensional crystalline systems into a homogeneous incommensurate phase. An exact solution of this model on the half-plane is obtained. A dependence of the thermodynamic properties of the system of domain walls on the distance to the boundary is found. At small deviations $\tau$ from the critical temperature, the density of the domain walls behaves as $\tau^{3/2}$ near the boundary and $\tau^{1/2}$ far from it.
@article{TMF_1988_75_1_a9,
     author = {E. I. Kornilov and V. B. Priezzhev},
     title = {Solution of the {Kasteleyn} model on a~half-plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {114--123},
     year = {1988},
     volume = {75},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a9/}
}
TY  - JOUR
AU  - E. I. Kornilov
AU  - V. B. Priezzhev
TI  - Solution of the Kasteleyn model on a half-plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 114
EP  - 123
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a9/
LA  - ru
ID  - TMF_1988_75_1_a9
ER  - 
%0 Journal Article
%A E. I. Kornilov
%A V. B. Priezzhev
%T Solution of the Kasteleyn model on a half-plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 114-123
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a9/
%G ru
%F TMF_1988_75_1_a9
E. I. Kornilov; V. B. Priezzhev. Solution of the Kasteleyn model on a half-plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 114-123. http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a9/

[1] Bekster R., Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[2] Kasteleyn P. W., J. Math. Phys., 4:2 (1963), 287–293 | DOI | MR

[3] Nagle J. F., Phys. Rev. Lett., 34:18 (1975), 1150–1153 | DOI

[4] Bhattacharjee S. M., Nagle J. F., Huse D. A., Fisher M. E., J. Stat. Phys., 32:2 (1983), 361–374 | DOI | MR

[5] McCoy B. M., Wu T. T., Phys. Rev., 162:2 (1967), 436–475 | DOI | MR

[6] Bariev R. Z., TMF, 40:1 (1979), 95–99 | MR

[7] Bariev R. Z., ZhETF, 77:3 (1979), 1217–1229

[8] Bak P., Rep. Prog. Phys., 45:4 (1982), 587–629 | DOI | MR

[9] Pokrovskii V. L., Talapov A. L., ZhETF, 78:1 (1980), 269–295 | MR

[10] Schulf H. J., Phys. Rev., B22:11 (1980), 5274–5277 | DOI

[11] Gordon M. B., Villain J., J. Phys., C12:4 (1979), L151–L154

[12] Nattermann T., J. Phys., 41:11 (1980), 1251–1262 | DOI | MR

[13] Shiba H., J. Phys. Soc. Japan, 48:1 (1980), 211–218 | DOI

[14] Jaabert M., Glachant A., Bienfait M., Boato G., Phys. Rev. Lett., 46:26 (1981), 1679–1681 | DOI

[15] Bhattacharjee S. M., Nagle J. F., Phys. Rev., A31:8 (1985), 3199–3213 | DOI | MR

[16] Fisher M. E. J., Stat. Phys., 34:5–6 (1984), 667–729 | DOI | MR

[17] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Nauka, M., 1976, § 151. | MR

[18] Feller V., Vvedenie v teoriyu veroyatnostei i ee primenenie, Mir, M., 1984, Gl. XIV. | MR

[19] Huse D. A., Fisher M. E., Phys. Rev., B29:1 (1984), 239–270 | DOI | MR

[20] Kornilov E. I., Priezzhev V. B., Z. Phys., B54:2 (1984), 351–356 | DOI | MR

[21] Kasteleyn P. W., Graph Theory and Theoretical Physics, ed. Harary F., Academic Press, London, 1967, 44–110 | MR

[22] Peierls B., Surprises in Theoretical Physics, New Jersey, Princeton, 1979, C. 68–73. | MR