A generalization of the renormalization-group equations for quantum-field theories of arbitrary form
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 157-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the renormalization-group equations to theories with Lagrangian of arbitrary form, including unrenormalizable interactions, is given, in the framework of dimensional regularization, the obtained equations make it possible to determine the coefficient functions of the higher poles from the lowest pole or the generalized $\beta$ functions.
@article{TMF_1988_75_1_a13,
     author = {D. I. Kazakov},
     title = {A~generalization of the renormalization-group equations for quantum-field theories of arbitrary form},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {157--160},
     year = {1988},
     volume = {75},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a13/}
}
TY  - JOUR
AU  - D. I. Kazakov
TI  - A generalization of the renormalization-group equations for quantum-field theories of arbitrary form
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 157
EP  - 160
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a13/
LA  - ru
ID  - TMF_1988_75_1_a13
ER  - 
%0 Journal Article
%A D. I. Kazakov
%T A generalization of the renormalization-group equations for quantum-field theories of arbitrary form
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 157-160
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a13/
%G ru
%F TMF_1988_75_1_a13
D. I. Kazakov. A generalization of the renormalization-group equations for quantum-field theories of arbitrary form. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 157-160. http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a13/

[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, 4-e izd., Nauka, M., 1984 | MR

[2] 't Hooft G., Nucl. Phys., B61:3 (1973), 455–468 | DOI

[3] Friedan D., Ann. of Phys., 163:2 (1985), 318–419 | DOI | MR | Zbl

[4] Alvarez-Gaume L., Freedman D. Z., Mukhi S., Ann. of Phys., 134:1 (1981), 85–109 | DOI | MR

[5] 't Hooft G., Nucl. Phys., B62:3 (1973), 444–456 | DOI

[6] 't Hooft G., Veltman M., Ann. Inst. H. Poincare, 20:1 (1974), 69–81

[7] Kazakov D. I. i dr., TMF, 31:2 (1977), 169–176 | MR

[8] Kazakov D. I., Phys. Lett., B179:4 (1986), 352–354 | DOI

[9] Kazakov D. I., Finiteness of nonlinear sigma-models on Ricci-flat manifolds, Preprint JINR E2-87-16, JINR, Dubna, 1987 | MR

[10] Grisaru M. T., van de Ven A. E. M., Zanon D., Nucl. Phys., B277:3 (1986), 409–428 | DOI | MR

[11] Grisaru M. T., Kazakov D. I., Nucl. Phys., B287:2, 189–204 | MR