Ground state and excitations of a one-dimensional bose gas on a finite interval
Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 148-156
Cet article a éte moissonné depuis la source Math-Net.Ru
The Bethe ansatz is used to obtain the wave function of a one-dimensional bounded system of Bose particles interacting with one another through a two-body $\delta$-function potential. The interaction of the particles with the surface (the boundaries of the interval) is described by a zero-range potential. Expressions are obtained for the ground-state energy and for the spectrum of surface excitations.
@article{TMF_1988_75_1_a12,
author = {V. L. Bulatov},
title = {Ground state and excitations of a~one-dimensional bose gas on a~finite interval},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {148--156},
year = {1988},
volume = {75},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a12/}
}
V. L. Bulatov. Ground state and excitations of a one-dimensional bose gas on a finite interval. Teoretičeskaâ i matematičeskaâ fizika, Tome 75 (1988) no. 1, pp. 148-156. http://geodesic.mathdoc.fr/item/TMF_1988_75_1_a12/
[1] Kulish P. P., Sklyanin E. K., Lect. Notes in Phys., 151, 1982, 61–119 | DOI | MR | Zbl
[2] Gaudin M., Phys. Rev., A4:1 (1971), 386–393 | DOI
[3] Gochev I. G., Pisma v ZhETF, 26:3 (1977), 136–138
[4] Schulz H., J. Phys., C18:3 (1985), 581–601
[5] Woynarovich F., Phys. Lett., A108:8 (1985), 401–406 | DOI | MR
[6] Cherednik I. V., TMF, 61:1 (1984), 35–44 | MR | Zbl
[7] Lieb E. H., Liniger W., Phys. Rev., 130:4 (1963), 1605–1615 | DOI | MR
[8] Berezin F. A., Pokhil G. P., Finkelberg V. M., Vestn. MGU. Ser. matem., 1964, no. 1, 21–28 | MR
[9] Kuprievich V. A., Physica, D14:3 (1985), 385–402 | MR