Functional-differential equations of the theory of many-particle quantum systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 423-429
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The antisymmetrization operator can be eliminated from the Schrödinger
equation for a system of identical fermions. The functionaldifferential
equations for the components of the wave function that
are then obtained are equivalent to the original equation. Their
solutions can be readily determined and have a transparent physical
meaning. The proposed formulation of the problem is topical for the
description of systems with complicated interaction potentials.
			
            
            
            
          
        
      @article{TMF_1988_74_3_a8,
     author = {G. P. Kamuntavichyus},
     title = {Functional-differential equations of the theory of many-particle quantum systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {423--429},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a8/}
}
                      
                      
                    TY - JOUR AU - G. P. Kamuntavichyus TI - Functional-differential equations of the theory of many-particle quantum systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 423 EP - 429 VL - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a8/ LA - ru ID - TMF_1988_74_3_a8 ER -
G. P. Kamuntavichyus. Functional-differential equations of the theory of many-particle quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 423-429. http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a8/
