Functional-differential equations of the theory of many-particle quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 423-429
Cet article a éte moissonné depuis la source Math-Net.Ru
The antisymmetrization operator can be eliminated from the Schrödinger equation for a system of identical fermions. The functionaldifferential equations for the components of the wave function that are then obtained are equivalent to the original equation. Their solutions can be readily determined and have a transparent physical meaning. The proposed formulation of the problem is topical for the description of systems with complicated interaction potentials.
@article{TMF_1988_74_3_a8,
author = {G. P. Kamuntavichyus},
title = {Functional-differential equations of the theory of many-particle quantum systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {423--429},
year = {1988},
volume = {74},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a8/}
}
G. P. Kamuntavichyus. Functional-differential equations of the theory of many-particle quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 423-429. http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a8/
[1] Smirnov Yu. F., Shishkova K. V., Izv. AN SSSR, ser. fiz., 27:11 (1963), 1442–1450
[2] Simonov Yu. A., YaF, 3:4 (1966), 630–638 | MR
[3] Solovev V. G., Teoriya slozhnykh yader, Nauka, M., 1971
[4] Kamuntavičius G. P., Few-Body Systems, 1:2 (1986), 91–109 | DOI
[5] Kamuntavichyus G.-P. P., Izv. AN SSSR, ser. fiz., 51:1 (1987), 8–14
[6] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya v sistemakh neskolkikh chastits, Nauka, M., 1985 | MR