$N=2$ supersymmetric quantum mechanics and the inverse scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 392-398
Cet article a éte moissonné depuis la source Math-Net.Ru
A connection between $N=2$ supersymmetric quantum mechanics and the inverse scattering problem is established. In contrast to $N=1$ supersymmetric quantum mechanics, construction of the isospectral Hamiltonians in the considered approach reveals the possibility of rearrangement of the spectrum, this affecting not only the ground state but also the excited states.
@article{TMF_1988_74_3_a5,
author = {V. P. Berezovoi and A. I. Pashnev},
title = {$N=2$ supersymmetric quantum mechanics and the inverse scattering problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {392--398},
year = {1988},
volume = {74},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a5/}
}
TY - JOUR AU - V. P. Berezovoi AU - A. I. Pashnev TI - $N=2$ supersymmetric quantum mechanics and the inverse scattering problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 392 EP - 398 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a5/ LA - ru ID - TMF_1988_74_3_a5 ER -
V. P. Berezovoi; A. I. Pashnev. $N=2$ supersymmetric quantum mechanics and the inverse scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 392-398. http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a5/
[1] Abraham P. B., Moses H. E., Phys. Rev. A, 22 (1980), 1333–1343 | DOI | MR
[2] Nieto M. M., Phys. Lett., 145B (1984), 201–210 | MR
[3] Sukumar C. V., J. Phys. A: Math. Gen., 18 (1985), 2917–2936 ; 2937–2955 | DOI | MR | MR
[4] Luban M., Pursey D. L., Phys. Rev. D, 33 (1986), 431–435 | DOI | MR
[5] Pursey D. L., Phys. Rev. D, 33 (1986), 1048–1055 | DOI | MR
[6] Berezovoi V. P., Pashnev A. I., TMF, 70:1 (1987), 146–153 | MR
[7] Pashnev A. I., TMF, 69:2 (1986), 311–315 | MR