Kinematic approach to the description of autowave processes in active media
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 440-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A phenomenological model for the description of autowave processes in excitable active media is formulated in the framework of the kinematic approach. A kinematic equation of evolution of the front of an autowave process in a two-dimensional active medium is derived. It is shown that stationary solutions of the evolution equation on a plane and on a sphere describe spiral waves. The dependence of the frequency of rotation of the spiral waves and radius of the core on the properties of the active medium is determined.
@article{TMF_1988_74_3_a10,
     author = {P. K. Brazhnik and V. A. Davydov and A. S. Mikhailov},
     title = {Kinematic approach to the description of autowave processes in active media},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {440--447},
     year = {1988},
     volume = {74},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a10/}
}
TY  - JOUR
AU  - P. K. Brazhnik
AU  - V. A. Davydov
AU  - A. S. Mikhailov
TI  - Kinematic approach to the description of autowave processes in active media
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 440
EP  - 447
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a10/
LA  - ru
ID  - TMF_1988_74_3_a10
ER  - 
%0 Journal Article
%A P. K. Brazhnik
%A V. A. Davydov
%A A. S. Mikhailov
%T Kinematic approach to the description of autowave processes in active media
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 440-447
%V 74
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a10/
%G ru
%F TMF_1988_74_3_a10
P. K. Brazhnik; V. A. Davydov; A. S. Mikhailov. Kinematic approach to the description of autowave processes in active media. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 440-447. http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a10/

[1] Zhabotinskii A. M., Kontsentratsionnye avtokolebaniya, Nauka, M., 1974

[2] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., UFN, 128 (1979), 625–666 | DOI | MR

[3] Nikolas G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh, Nauka, M., 1979

[4] Polak L. S., Mikhailov A. S., Samoorganizatsiya v neravnovesnykh fiziko-khimicheskikh sistemakh, Nauka, M., 1983

[5] Avtovolnovye protsessy v sistemakh s diffuziei, IPF AN SSSR, Gorkii, 1981, S. 6, 77, 117.

[6] Mikhailov A. S., Krinsky V. I., Physica, 9D (1983), 346–371 | MR | Zbl

[7] Krinskii V. I., Mikhailov A. S., Panfilov A. V., Ermakova E. A., Tsyganov M. A., Izv. Vuz., radiofizika, 1984, no. 27, 1116–1129

[8] Zykov V. S., Modelirovanie volnovykh protsessov v vozbudimykh sredakh, Nauka, M., 1984 | Zbl

[9] Davydov V. A., Mikhailov A. S., Brazhnik P. K., “Kinetika i gorenie”, Khimicheskaya fizika protsessov goreniya i vzryva, Materialy VIII Vsesoyuzn. simpoziuma po goreniyu i vzryvu (Tashkent), Otd. in-ta khimfiziki, Chernogolovka, 1986

[10] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956

[11] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR