Quantum-mechanical models in $R_n$ associated with extensions of the energy operator in a Pontryagin space
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 331-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper describes self-adjoint extensions of the operator $H_0=-\Delta$ from the Hilbert space $L_2(R_n)$ to a certain Pontryagin space generated by “interactions” represented by generalized functions. Hamiltonians of quantum-mechanical models are obtained by restricting such extensions to positive invariant subspaces.
@article{TMF_1988_74_3_a1,
     author = {Yu. G. Shondin},
     title = {Quantum-mechanical models in~$R_n$ associated with extensions of the energy operator in {a~Pontryagin} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {331--344},
     year = {1988},
     volume = {74},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a1/}
}
TY  - JOUR
AU  - Yu. G. Shondin
TI  - Quantum-mechanical models in $R_n$ associated with extensions of the energy operator in a Pontryagin space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 331
EP  - 344
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a1/
LA  - ru
ID  - TMF_1988_74_3_a1
ER  - 
%0 Journal Article
%A Yu. G. Shondin
%T Quantum-mechanical models in $R_n$ associated with extensions of the energy operator in a Pontryagin space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 331-344
%V 74
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a1/
%G ru
%F TMF_1988_74_3_a1
Yu. G. Shondin. Quantum-mechanical models in $R_n$ associated with extensions of the energy operator in a Pontryagin space. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 3, pp. 331-344. http://geodesic.mathdoc.fr/item/TMF_1988_74_3_a1/

[1] Berezin F. A., Faddeev L. D., DAN SSSR, 141:6 (1961), 1335–1336

[2] Shirokov Yu. M., TMF, 40:3 (1979), 348–354 | MR | Zbl

[3] Pavlov B. S., TMF, 59:3 (1984), 345–353 | MR

[4] Shondin Yu. G., TMF, 64:3 (1985), 432–441 | MR

[5] Kirzhnits D. A., Polevye metody teorii mnogikh chastits, Gosatomizdat, M., 1963 | MR

[6] Khuang K., Statisticheskaya mekhanika, Mir, M., 1966

[7] Tsirova I., Shirokov Yu. M., TMF, 46:3 (1981), 310–315 | MR | Zbl

[8] Berezin F. A., Matem. sb., 60(102):4 (1963), 425–446 | MR | Zbl

[9] Bognar J., Indefinite inner product spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1974 | MR | Zbl

[10] Iohvidov I. S., Krein M. G., Langer H., Introduction to the spectral theory of operators in spaces with an indefinite metric, Academic Verlag, Berlin, 1982 | MR

[11] Shondin Yu. G., TMF, 65:1 (1985), 24–34 | MR

[12] Krein M. G., Langer G. K., Funkts. analiz i ego prilozh., 5:2 (1971), 59–71 ; 3, 54–69 | MR | Zbl | Zbl

[13] Naimark M. A., DAN SSSR, 170:6 (1966), 1259–1261 | MR

[14] Coddington E. A., Extension theory of formally normal and symmetric subspaces, Mem. Am. Math. Soc., 134, 1973 | MR | Zbl

[15] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961