Quantum mechanics of one-dimensional motion in a~field with the singularity 
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 2, pp. 247-258
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The one-dimensional motion of a particle in a field with singularity
$\lambda|x|^{-\nu}$, $0\nu2$ and $\nu=2$, $-1/4\lambda3/4$ is investigated quantum
mechanically. A physically acceptable self-adjoint extension of the
Hamiltonian is found. A perturbation theory is constructed for a confining even smooth potential. It is shown that in this case matrix elements of the perturbation and 
Rayleigh–Schrödinger coefficients exist only for $\nu3/2$. A way of calculating transmission coefficients for an asymptotically free potential is found. Examples of exact
solutions $\nu=1$ and $\nu=2$ are given.
			
            
            
            
          
        
      @article{TMF_1988_74_2_a10,
     author = {V. B. Gostev and A. R. Frenkin},
     title = {Quantum mechanics of one-dimensional motion in a~field with the singularity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {247--258},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a10/}
}
                      
                      
                    TY - JOUR AU - V. B. Gostev AU - A. R. Frenkin TI - Quantum mechanics of one-dimensional motion in a~field with the singularity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1988 SP - 247 EP - 258 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a10/ LA - ru ID - TMF_1988_74_2_a10 ER -
V. B. Gostev; A. R. Frenkin. Quantum mechanics of one-dimensional motion in a~field with the singularity. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 2, pp. 247-258. http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a10/
