Quantum mechanics of one-dimensional motion in a field with the singularity
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 2, pp. 247-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The one-dimensional motion of a particle in a field with singularity $\lambda|x|^{-\nu}$, $0<\nu<2$ and $\nu=2$, $-1/4<\lambda<3/4$ is investigated quantum mechanically. A physically acceptable self-adjoint extension of the Hamiltonian is found. A perturbation theory is constructed for a confining even smooth potential. It is shown that in this case matrix elements of the perturbation and Rayleigh–Schrödinger coefficients exist only for $\nu<3/2$. A way of calculating transmission coefficients for an asymptotically free potential is found. Examples of exact solutions $\nu=1$ and $\nu=2$ are given.
@article{TMF_1988_74_2_a10,
     author = {V. B. Gostev and A. R. Frenkin},
     title = {Quantum mechanics of one-dimensional motion in a~field with the singularity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {247--258},
     year = {1988},
     volume = {74},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a10/}
}
TY  - JOUR
AU  - V. B. Gostev
AU  - A. R. Frenkin
TI  - Quantum mechanics of one-dimensional motion in a field with the singularity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 247
EP  - 258
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a10/
LA  - ru
ID  - TMF_1988_74_2_a10
ER  - 
%0 Journal Article
%A V. B. Gostev
%A A. R. Frenkin
%T Quantum mechanics of one-dimensional motion in a field with the singularity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 247-258
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a10/
%G ru
%F TMF_1988_74_2_a10
V. B. Gostev; A. R. Frenkin. Quantum mechanics of one-dimensional motion in a field with the singularity. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 2, pp. 247-258. http://geodesic.mathdoc.fr/item/TMF_1988_74_2_a10/

[1] Klauder J., Acta Phys. Austriaca Suppl., 11 (1973), 341–387

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. IV, Mir, M., 1982, Gl. XII. | MR

[3] Harrell E., Ann. Phys., 105 (1977), 379–406 | DOI | MR | Zbl

[4] Calogero F., J. Math. Phys., 10 (1969), 2191–2220 | DOI | MR

[5] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979, S. 109. | MR

[6] Gostev V. B., Mineev V. S., Frenkin A. R., TMF, 68:1 (1986), 45–57 | MR

[7] Dittrich J., Exner P., J. Math. Phys., 26 (1985), 2000–2008 | DOI | MR | Zbl

[8] Gostev V. B., Mineev V. S., Frenkin A. R., TMF, 70:3 (1987), 384–393 | MR

[9] Rubakov V. A., Kvarki-84, T. 1, IYaI AN SSSR, M., 1985, 169–178

[10] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978, S. 156. | MR

[12] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966, Dob. II. | MR | Zbl

[13] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, T. II, IL, M., 1960, S. 595–596. | MR

[14] Case K. M., Phys. Rev., 80 (1950), 792–804 | MR

[15] Galitskii V. M., Karnakov B. M., Kogan V. I., Zadachi po kvantovoi mekhanike, Nauka, M., 1981, S. 70, 350. | MR

[16] Kopson E., Asimptoticheskie razlozheniya, Mir, M., 1966, S. 40.

[17] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984, § 29. | MR

[18] Babikov V. V., Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1968, S. 16–23. | MR

[19] De Alfaro V., Redzhe T., Potentsialnoe rasseyanie, Mir, M., 1966, Prilozhenie II. | Zbl

[20] Goldberger M., Vatson K., Teoriya stolknovenii, Mir, M., 1967

[21] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971, Prilozhenie A. | Zbl

[22] Ezawa H., Klauder J., Shepp L., J. Math. Phys., 16 (1975), 783–799 | DOI | MR

[23] Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980, S. 113. | MR