Thermodynamics of the basic three-dimensional ferromagnetic models in the fluctuation approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 112-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the approximation which consists of replacing the operator of the square of the fluctuation components of the local field by its mean value $(\Delta\sigma_f^\alpha)^2\simeq\langle(\Delta\sigma_f^\alpha)^2\rangle$, $\Delta\sigma_f^\alpha=\sigma_f^\alpha-\langle\sigma_f^\alpha\rangle$ (called henceforth the static fluctuation approximation), a systematic microscopic scheme is proposed for calculating the correlation functions and the thermodynamic characteristics associated with them for a large class of magnetic systems. The basic threedimensional ferromagnetic models (Ising, Heisenberg) are studied fairly fully and from a common point of view in zero magnetic field for temperatures $T\geqslant T_c$. The critical temperatures of the models are determined, and the specific heat and binary correlation functions of the short-range order are calculated for the three basic types of cubic lattice with short-range interaction. Comparison of the obtained results with other methods of calculating the models indicates a good accuracy of the approximation, which may provide a reliable basis for the calculation of more complicated systems. Ways of testing experimentally the fluctuation approximation in the paramagnetic region of temperatures are pointed out.
@article{TMF_1988_74_1_a9,
     author = {R. R. Nigmatullin and V. A. Toboev},
     title = {Thermodynamics of~the~basic three-dimensional ferromagnetic models in~the~fluctuation approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--124},
     year = {1988},
     volume = {74},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a9/}
}
TY  - JOUR
AU  - R. R. Nigmatullin
AU  - V. A. Toboev
TI  - Thermodynamics of the basic three-dimensional ferromagnetic models in the fluctuation approximation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 112
EP  - 124
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a9/
LA  - ru
ID  - TMF_1988_74_1_a9
ER  - 
%0 Journal Article
%A R. R. Nigmatullin
%A V. A. Toboev
%T Thermodynamics of the basic three-dimensional ferromagnetic models in the fluctuation approximation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 112-124
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a9/
%G ru
%F TMF_1988_74_1_a9
R. R. Nigmatullin; V. A. Toboev. Thermodynamics of the basic three-dimensional ferromagnetic models in the fluctuation approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a9/

[1] Smart Dzh., Effektivnoe pole v teorii magnetizma, Mir, M., 1969

[2] Nigmatullin R. R., Toboev V. A., TMF, 68:1 (1986), 88–98 | MR

[3] Fedyanin V. K., Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1973, 241–260 | MR

[4] Zhelifonov M. P., TMF, 8:3 (1971), 401–412

[5] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 | MR

[6] Bariev R. Z., Nekotorye tochnye resheniya dlya korrelyatsionnykh funktsii modeli Izinga, Diss. na soiskanie uch. st. kand. fiz-matem. nauk, Kazan, 1975

[7] Bester R., Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[8] Rudoi Yu. G., Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1973, 97–164 | MR

[9] Lundin A. A., Makarenko A. V., ZhETF, 87:9 (1984), 999–1009

[10] Mannari I., Kageyama H., Progr. Theor. Phys. Suppl., Extra Number (1968), 269–279 | DOI | MR

[11] Morita F., Horigychi T., J. Math. Phys., 12:6 (1971), 981–992 | DOI | MR

[12] Frank B., Mitran O., J. Phys. C, 10:4 (1977), 2641–2652 | DOI

[13] Frank B., Mitran O., J. Phys. C, 11:10 (1978), 2087–2094 | DOI | MR

[14] Zhang H., Min B., J. Phys. C, 14:12 (1981), 1779–1788 | DOI

[15] Taggart G. Bruce, Fittipaldi P. P., Phys. Rev. B, 25:11 (1982), 7026–7033 | DOI

[16] Sykes M. F., Gaunt D. S., Roberts P. D., Wyles J. A., J. Phys. A, 5:5 (1972), 625–652

[17] Gaunt D. S., Sykes M. F., J. Phys. A, 6:10 (1973), 1517–1531 | DOI | MR

[18] Baker G. A., Phys. Rev. A, 136:5 (1964), 1376–1381 | DOI | MR

[19] Baker G. A., Cilbert H. E., Eve J. E., Rushbrooke, Phys. Lett., 20:2 (1966), 146–147 | DOI

[20] Callen H. B., Phys. Lett., 4:2 (1963), 161 | DOI | MR

[21] Tahir-Kneli R. A., Haar D., Phys. Rev., 127:1 (1962), 88–94 | DOI

[22] Wood P. J., Rushbrooke G. S., Mol. Phys., 1 (1958), 257 | DOI

[23] Baker G. A., Gammel J. L., Wiles J. C., J. Math. Anal. and Appl., 2:6 (1965), 405 | MR

[24] Baker G. A., Phys. Rev., 129:1 (1963), 99–102 | DOI

[25] Uait R., Kvantovaya teoriya magnetizma, Mir, M., 1985