On discreteness of the spectrum of some operator sheaves associated with a periodic Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 94-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three-dimensional periodic Schrödinger operators with potentials that are square integrable on the unit cell (single-electron model of a crystal) are considered. A description is given of the class of rational curves that do not have more than a finite number of common points with any isoenergy surface (in particular, the Fermi surface) of an arbitrary operator of the considered form. A consequence of a theorem proved in the paper is the absence on the isoenergy surfaces of elements of planes, cones, and cylinders with straight generators, and all possible paraboloids and hyperboloids. Another interesting consequence is the following assertion: The topological dimension of an isoenergy manifold does not exceed two, which justifies the use of the word “surface”. The results generalize the assertion of Thomas's theorem on the absence on isoenergy surfaces of straight edges.
@article{TMF_1988_74_1_a7,
     author = {V. V. Dyakin and S. I. Petrukhnovskii},
     title = {On discreteness of~the~spectrum of~some operator sheaves associated with a~periodic {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {94--102},
     year = {1988},
     volume = {74},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a7/}
}
TY  - JOUR
AU  - V. V. Dyakin
AU  - S. I. Petrukhnovskii
TI  - On discreteness of the spectrum of some operator sheaves associated with a periodic Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 94
EP  - 102
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a7/
LA  - ru
ID  - TMF_1988_74_1_a7
ER  - 
%0 Journal Article
%A V. V. Dyakin
%A S. I. Petrukhnovskii
%T On discreteness of the spectrum of some operator sheaves associated with a periodic Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 94-102
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a7/
%G ru
%F TMF_1988_74_1_a7
V. V. Dyakin; S. I. Petrukhnovskii. On discreteness of the spectrum of some operator sheaves associated with a periodic Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 94-102. http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a7/

[1] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[2] Ashkroft N., Mermin N., Fizika tverdogo tela, T. 1, Mir, M., 1979

[3] Odeh F., Keller J. B., J. Math. Phys., 5 (1964), 1499–1504 | DOI | MR | Zbl

[4] Thomas L. E., Commun. Math. Phys., 46 (1973), 153–166 | MR

[5] Avron J., Simon B., Ann. Phys., 110 (1977), 85–101 | DOI | MR

[6] Dyakin V. V., Petrukhnovskii S. I., DAN SSSR, 264:5 (1982), 1117–1119 | MR

[7] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965 | MR

[10] Levitan B. M., Pochti periodicheskie funktsii, Gostekhteorizdat, M., 1953 | MR

[11] Veil G., “O ravnomernom raspredelenii chisel po modulyu odin”, Izbrannye trudy, Nauka, M., 1984, 58–93 | MR

[12] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1971 | MR | Zbl