Kinks in systems with cubic and quartic anharmonicity
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 61-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a classical system of interacting particles with on-site cubic or quartic anharmonicity explicit analytic solutions of the d'Alembert equation are obtained in the form of kinks in the presence of dissipation (viscous or Rayleigh) and a constant force. These kinks will be asymptotically stable in the case of quartic anharmonicity and unstable in the case cubic anharmonicity.
@article{TMF_1988_74_1_a4,
     author = {V. N. Kashcheev},
     title = {Kinks in~systems with cubic and quartic anharmonicity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {61--68},
     year = {1988},
     volume = {74},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a4/}
}
TY  - JOUR
AU  - V. N. Kashcheev
TI  - Kinks in systems with cubic and quartic anharmonicity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1988
SP  - 61
EP  - 68
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a4/
LA  - ru
ID  - TMF_1988_74_1_a4
ER  - 
%0 Journal Article
%A V. N. Kashcheev
%T Kinks in systems with cubic and quartic anharmonicity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1988
%P 61-68
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a4/
%G ru
%F TMF_1988_74_1_a4
V. N. Kashcheev. Kinks in systems with cubic and quartic anharmonicity. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 61-68. http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a4/

[1] Nakajima K., Sawada Y., Onodera Y., J. Appl. Phys., 46:12 (1975), 5272–5279 | DOI

[2] Collins M. A., Blumen A., Currie J. F., Ross J., Phys. Rev. B, 19:7 (1979), 3630–3644 | DOI

[3] Bilz H., Büttiker H., Fröhlich H., Z. Naturforsch., 36b:2 (1981), 208–212

[4] Currie J. F., Krumhansl J. A., Bishop A. R., Phys. Rev. B, 22:2 (1980), 477–496 | DOI | MR

[5] Radzharaman R., Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985, Gl. 1.

[6] Lal P., Phys. Lett., 111A:8/9 (1985), 389–390 | DOI

[7] Cervero J. M., Estevez P. G., Phys. Lett., 114A:8/9 (1986), 435–436 | DOI | MR

[8] Kascheev V. N., Avtomodelnye resheniya nelineinykh uravnenii pri nalichii dissipatsii i postoyannoi sily, Preprint LAFI-085, In-t fiziki AN LatvSSR, Salaspils, 1986

[9] Geicke J., Phys. Lett., 111A:1 (1985), 10–14 | DOI | MR

[10] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, Gostekhteorizdat, M., 1956

[11] Khayasi T., Nelineinye kolebaniya v fizicheskikh sistemakh, Mir, M., 1968

[12] Blaker O., Analiz nelineinykh sistem, Mir, M., 1969 | MR

[13] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983, Chap. 7.3. | MR | Zbl

[14] Holmes P. J., Rand D. A., Intern. J. Nonlinear Mech., 15:6 (1980), 449–458 | DOI | MR | Zbl

[15] Lure A. I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961, S. 232–233. | MR

[16] Krumhansl J. A., Schrieffer J., Phys. Rev. B, 11:9 (1975), 3535–3545 | DOI

[17] Aubry S., J. Chem. Phys., 64:8 (1975), 3392–3402 | DOI

[18] Khirota R., “Pryamye metody v teorii solitonov”, Solitony, eds. Bullaf R., Kodri F., Mir, M., 1983, 175–192 | MR

[19] Kascheev V. N., Avtomodelnye resheniya nelineinykh uravnenii pri nalichii dissipatsii i postoyannoi sily, II, Preprint LAFI-088, In-t fiziki AN LatvSSR, Salaspils, 1986

[20] Ito H., Tasaki H., Phys. Lett., 113A:4 (1985), 179–182 | DOI