Miura transformation on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 135-139
Cet article a éte moissonné depuis la source Math-Net.Ru
A proposal is made for extending the Miura transformation to a lattice, and this makes it possible to construct a completely integrable discrete variant of Liouville's equation which takes into account singular solutions.
@article{TMF_1988_74_1_a11,
author = {A. Yu. Volkov},
title = {Miura transformation on~a~lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {135--139},
year = {1988},
volume = {74},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a11/}
}
A. Yu. Volkov. Miura transformation on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 74 (1988) no. 1, pp. 135-139. http://geodesic.mathdoc.fr/item/TMF_1988_74_1_a11/
[1] Takhtajan L. A., Faddeev L. D., Lect. Notes in Phys., 246, 1986, 166–179 | MR
[2] Gervais J.-L., Phys. Lett., 160B (1985), 279–282 | DOI | MR
[3] Volkov A. Yu., Zap. nauch. semin. LOMI, 155, 1986, 17–25 | MR
[4] Volkov A. Yu., Zap. nauch. semin. LOMI, 161, 1987, 71–91
[5] Dzhordzhadze G. P., Pogrebkov A. K., Polivanov M. K., TMF, 40:2 (1979), 221–234 | MR | Zbl
[6] Johansson L., Marnelius R., Nucl. Phys., B254 (1985), 201 | DOI | MR
[7] Izergin A. G., Korepin V. E., Nucl. Phys., B205 FS 5 (1982), 401–413 | DOI | MR
[8] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR