Effects due to finite values of the temperature and the chemical potential in some two-dimensional field models
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 3, pp. 393-401 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the mean field approximation the structure of ground state is investigated in the $N\to\infty$ Gross–Neveu model and two-dimensional $\varphi^4$ model with fermions finite temperature $T$ and chemical potential of fermions $\alpha$. Critical values $T_c$ and $\alpha_c$ are obtained. It is found that the symmetry which is broken at $T=\alpha 0$ can be restored by means of raising $T$ or $\alpha$ above critical values. The possibility of using the results in the description of physical properties of quasi-one-dimensional systems in the theory of condensed matter is discussed.
@article{TMF_1987_73_3_a5,
     author = {V. A. Osipov and V. K. Fedyanin},
     title = {Effects due to finite values of the temperature and the chemical potential in some two-dimensional field models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {393--401},
     year = {1987},
     volume = {73},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a5/}
}
TY  - JOUR
AU  - V. A. Osipov
AU  - V. K. Fedyanin
TI  - Effects due to finite values of the temperature and the chemical potential in some two-dimensional field models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 393
EP  - 401
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a5/
LA  - ru
ID  - TMF_1987_73_3_a5
ER  - 
%0 Journal Article
%A V. A. Osipov
%A V. K. Fedyanin
%T Effects due to finite values of the temperature and the chemical potential in some two-dimensional field models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 393-401
%V 73
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a5/
%G ru
%F TMF_1987_73_3_a5
V. A. Osipov; V. K. Fedyanin. Effects due to finite values of the temperature and the chemical potential in some two-dimensional field models. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 3, pp. 393-401. http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a5/

[1] Dashen R. F., Ma S., Rajaraman R., Phys. Rev., D11:6 (1975), 1499–1508 | MR

[2] Osipov V. A., Fedyanin V. K., “Kontinualnaya model poliatsetilena i dvumernye modeli relyativistskoi teorii polya”, Kratkie soobscheniya OIYaI, no. 4-84, OIYaI, Dubna, 1984, 33–38

[3] Wolff U., Phys. Lett., B157:4 (1985), 303–308 | DOI

[4] Harrington B. J., Vildiz A., Phys. Rev., D11:4 (1975), 779–783 | MR

[5] Weinberg S., Phys. Rev., D9:12 (1974), 3357–3378

[6] Harrington B. J., Yildiz A., Phys. Rev. Lett., 33:5 (1974), 324–327 | DOI

[7] Dolan L., Jackiw R., Phys. Rev., D9:12 (1974), 3320–3341 | MR

[8] Linde A. D., Rep. Prog. Phys., 42 (1979), 389–437 | DOI

[9] Takayama H., Maki K., Phys. Rev., B20:12 (1979), 5009–5019 ; Su R.. Bi P., Ni G., J. Phys., A16:11 (1983), 2445–2455 | DOI | MR | MR

[10] Campbell D. K., Bishop A. R., Nucl. Phys., B200 (FS4) (1982), 297–328 | DOI

[11] Chen J. et al., Solid State Commun., 53:9 (1985), 757–763 | DOI

[12] Brazovskii S. A., ZhETF, 78:2 (1980), 677–699 | MR