Calculation of quantum corrections to nontrivial classical solutions by means of the zeta function
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 3, pp. 379-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Riemann zeta-function is used for calculating one-loop quantum corrections in field theory. General formulas are obtained for quantum corrections to soliton masses as well as decay probabilities of metastable vacuum in scalar theory.
@article{TMF_1987_73_3_a4,
     author = {R. V. Konoplich},
     title = {Calculation of quantum corrections to nontrivial classical solutions by means of the zeta function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {379--392},
     year = {1987},
     volume = {73},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a4/}
}
TY  - JOUR
AU  - R. V. Konoplich
TI  - Calculation of quantum corrections to nontrivial classical solutions by means of the zeta function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 379
EP  - 392
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a4/
LA  - ru
ID  - TMF_1987_73_3_a4
ER  - 
%0 Journal Article
%A R. V. Konoplich
%T Calculation of quantum corrections to nontrivial classical solutions by means of the zeta function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 379-392
%V 73
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a4/
%G ru
%F TMF_1987_73_3_a4
R. V. Konoplich. Calculation of quantum corrections to nontrivial classical solutions by means of the zeta function. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 3, pp. 379-392. http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a4/

[1] Christ N. H., Lee T. D., Phys. Rev., D12:6 (1975), 1606–1627 | MR

[2] Dashen R. F., Hasslacher B., Neveu A., Phys. Rev., D10:12 (1974), 4130–4138

[3] Faddeev L. D., Korepin V. E., Phys. Rep., 42C:1 (1978), 1–87 | DOI | MR

[4] Goldstone J., Jackiw R., Phys. Rev., D11:6 (1975), 1486–1498 | MR

[5] Polyakov A. M., Pisma v ZhETF, 20:6 (1974), 430–433

[6] Kaul R. K., Rajaraman R., Phys. Lett., 131B:4–6 (1983), 357–361 | DOI

[7] Yamagishi H., Phys. Lett., 147B:6 (1984), 425–429 | DOI

[8] Dashen R. F., Hasslacher B., Neveu A., Phys. Rev., D11:12 (1975), 3424–3450 | MR

[9] Ventura I., Phys. Rev., B24:5 (1981), 2812–2816 | DOI | MR

[10] Konoplich R. V., Rubin S. G., YaF, 37:5 (1983), 1330–1336

[11] Takhtadzhyan L. A., Faddeev L. D., TMF, 21:2 (1974), 160–174

[12] Coleman S., The whys of subnuclear physics, ed. A. Zichichi, Plenum Press, New York, 1979 | MR

[13] Wipf A. W., Nucl. Phys., B269:1 (1986), 24–44 | DOI | MR

[14] S. Khoking, V. Izrael (red.), Obschaya teoriya otnositelnosti, Mir, M., 1983

[15] Ramon P., Teoriya polya, Mir, M., 1984 | MR

[16] Romanov V. N., Shvarts A. S., TMF, 41:2 (1979), 190–204 | MR

[17] Dyakonov D. I., Petrov V. Yu., Yung A. V., Phys. Lett., 130B:6 (1983), 385–388 | DOI | MR

[18] Ball R., Osborn H., Nucl. Phys., B263:2 (1986), 245–264 | DOI | MR

[19] Perelomov A. M., Ann. Inst. Henri Poincare, 24:2 (1976), 161–164 | MR | Zbl

[20] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[21] Callan C. G., Coleman S., Phys. Rev., D16:6 (1977), 1762–1768

[22] Langer J. S., Ann. Phys., 41:1 (1967), 108–157 | DOI

[23] Likharev K. K., UFN, 139:1 (1983), 169–184 | DOI | MR

[24] Radzharaman R., Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985

[25] Petukhov B. V., Pokrovskii V. L., ZhETF, 63:2 (1972), 634–647

[26] Lifshits I. M., Kagan Yu., ZhETF, 62:1 (1972), 385–402 | MR

[27] Voloshin M. B., Kobzarev I. Yu., Okun L. B., YaF, 20:6 (1974), 1229–1234

[28] Konoplich R. V., Rubin S. G., YaF, 42:5 (1985), 1282–1290

[29] Kiselev V. G., Selivanov K. G., Pisma v ZhETF, 39:2 (1984), 72–75

[30] Voloshin M. B., YaF, 42:4 (1985), 1017–1026