Anomalies in spaces of even and odd dimensions in the scheme of stochastic quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 3, pp. 362-378 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of stochastic quantization method with the generalised scheme of stochastic regularization, axial anomalies in even- and odd-dimensional spaces are studied. Although stochastic regularization preserves formally axial and gauge symmetries, the standard even-dimensional axial anomalies of Dirac fermions are correctly reproduced in the limit of taking-off the regularization, while the anomalies of chiral fermions are reproduced in the covariant form. General conditions of existence and compensation of the anomalies of massless fermions violating the parity in odd-dimensional spaces are analysed. The stochastic scheme in odd-dimensional spaces in working when the anomalies violating the parity are absent. $P$-anomalous part of the effective action of infinitely heavy fermions in odd-dimensional spaces is explicitely calculated.
@article{TMF_1987_73_3_a3,
     author = {\'Ed. Sh. Egoryan and \'E. R. Nissimov and S. Pacheva},
     title = {Anomalies in spaces of even and odd dimensions in the scheme of stochastic quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {362--378},
     year = {1987},
     volume = {73},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a3/}
}
TY  - JOUR
AU  - Éd. Sh. Egoryan
AU  - É. R. Nissimov
AU  - S. Pacheva
TI  - Anomalies in spaces of even and odd dimensions in the scheme of stochastic quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 362
EP  - 378
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a3/
LA  - ru
ID  - TMF_1987_73_3_a3
ER  - 
%0 Journal Article
%A Éd. Sh. Egoryan
%A É. R. Nissimov
%A S. Pacheva
%T Anomalies in spaces of even and odd dimensions in the scheme of stochastic quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 362-378
%V 73
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a3/
%G ru
%F TMF_1987_73_3_a3
Éd. Sh. Egoryan; É. R. Nissimov; S. Pacheva. Anomalies in spaces of even and odd dimensions in the scheme of stochastic quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 3, pp. 362-378. http://geodesic.mathdoc.fr/item/TMF_1987_73_3_a3/

[1] Parisi G., Wu Y. S., Sci. Sinica, 24 (1981), 483–492 | MR

[2] Marchesini G., Nucl. Phys., B191:2 (1981), 214–230 ; Zwanziger D., Nucl. Phys., 1981, no. 1, 259 ; Namiki M. et al., Progr. Theor. Phys., 69 (1983), 1580–1591 ; 70, 326–336 ; Floratos F., Iliopoulos J., Nucl. Phys., B214:3 (1983), 392–399 | DOI | MR | DOI | MR | DOI | MR | MR | DOI | MR

[3] Alfaro J., Sakita B., Phys. Lett., B121:5 (1983), 339–344 | DOI | MR

[4] Namiki M. et al., Preprint WU-HEP-3,4, Waseda Univ., 1984

[5] Parisi G., Nucl. Phys., B180:3 (1981), 378–384 ; B205:3 (1982), 337–344 | DOI | MR | DOI | MR

[6] Fukai T. et al., Progr. Theor. Phys., 69 (1983), 1600–1610 ; Damgaard P. H., Tsokos K., Nucl. Phys., B235:1 (1984), 75–85 ; Horseley P., Schoenmaker W., Phys. Rev., D31:6 (1985), 822–832 | DOI | MR | DOI | MR

[7] Breit J. D., Gupta S., Zaks A., Nucl. Phys., B233:1 (1984), 61–76 | DOI

[8] Chaturvedi S., Kapoor A., Srinvasen V., Phys. Lett., B140:1–2 (1984), 56–58 | DOI | MR

[9] Ishikawa K., Nucl. Phys., B241:4 (1984), 589–599 | DOI | MR

[10] Huffel H., Rumpf H., Preprint UWThph-30, Vienna Univ., Vienna, 1984

[11] Adler S., Lectures on Elementary Particles and Quantum Field Theory, MIT Press, Cambridge, MA, 1970; Jackiw R., Lectures on Current Algebra and Its Applications, Princeton, 1972 ; Bardeer W. A., Phys. Rev., 184:5 (1969), 1848–1859 | MR | DOI

[12] Romanov V. N., Schwarz A. S., Theor. Math. Phys., 41:2 (1979), 190–204 ; Schroer B., Acta Phys. Austr., Suppl., XIX (1978), 155–167 | DOI | MR | MR

[13] Wess J., Zumino B., Phys. Lett., B37:1 (1971), 95–97 | DOI | MR

[14] Bardeen W. A., Zumino B., Nucl. Phys., B244:3 (1984), 421–430 ; Alvarez-Gaume L., Cinsparg P., Ann. Phys., 161 (1985), 423–450 ; Fujikawa K., Phys. Rev., D31:2 (1985), 341–352 | DOI | MR | DOI | MR | MR

[15] Redlich A. N., Phys. Rev. Lett., 52:1 (1984), 18–21 | DOI | MR

[16] Alvarez-Gaume L., Witten E., Nucl. Phys., B234:2 (1984), 269–300 | DOI | MR

[17] Niemi A. J., Semenoff G. W., Phys. Rev. Lett., 51:23 (1983), 2077–2080 ; Jackiw R., Phys. Rev., D29:10 (1984), 2375–2378 | DOI | MR | MR

[18] Lott J., Phys. Lett., B145:3–4 (1984), 179–180 | DOI | MR

[19] Alvarez-Gaume L., Delia Pietra S., Moore G., Preprint HUTP A028, Harvard, 1985 | MR

[20] Friedman M. et al., Phys. Rev. Lett., 52 (1984), 1587–1589 | DOI

[21] Nissimov E. R., Pacheva S. J., Phys. Lett., 146B:3 (1984), 227–230 | DOI | MR

[22] Nissimov E. R., Pacheva S. J., Proc. XIII Int. Conf. on Diff. Geom. Methods in Theor. Physics (Shumen/Bulg., 1984), eds. H. Doebner, T. D. Palev, World Sci., 1986 | MR

[23] Atiysh M. F., Patodi V. K., Singer I. M., Math. Proc. Camb. Phil. Soc., 77 (1975), 43–50 ; 78 (1975), 405–502 ; 79 (1976), 71–79 | DOI | MR | DOI | MR | DOI | MR

[24] Lott J., Commun. Math. Phys., 93 (1984), 533–543 ; Niemi A. J., Semenoff G. W., Phys. Rev., D30:4 (1984), 809–818 ; Niemi A. J., Nucl. Phys., B251:1 (1985), 155–181 ; Blankenbeckler R., Boyanovsky D., Phys. Rev., D31 (1985), 2089 | DOI | MR | MR | DOI | MR

[25] Nissimov E. R., Pacheva S. J., Phys. Lett., 157B:5 (1985), 407–412 | DOI | MR

[26] Banks T., Casher A., Nucl. Phys., B169:1 (1980), 103–127 ; Vafa T., Witten E., Nucl. Phys., B234:1–2 (1984), 173–188 | DOI | MR | DOI | MR

[27] Alfaro J., Nucl. Phys., B253:3–4 (1985), 464–476 | DOI | MR

[28] Seeley R., Proc. Symp. Pure Math., 10, 1967, AMS 288 ; Atiyah M. F., Bott R., Patodi V. K., Invent. Math., 19 (1973), 279–282 | MR | DOI | MR

[29] Eguchi T., Gilkey P., Hanson A., Phys. Rep., 66 (1980), 213–243 | DOI | MR

[30] Zumino B., Relativity, Groups and Topology, II, eds. R. Stora, B. S. de Witt, North Holland, 1984 | MR

[31] Bardeen W. A., Phys. Rev., 184:5 (1969), 1848–1859 ; Frampton P. H., Kephart T. W., Phys. Rev. Lett., 50:18 (1983), 1343–1350 ; Phys. Rev., D28:10 (1983), 1010–1023 | DOI | DOI | MR | MR

[32] Faddeev L. D., Lecture Notes, no. 6, Leningrad Univ., L., 1975; Hawking S. W., Commun. Math. Phys., 55 (1977), 153–163 | DOI | MR

[33] Dubrovin B. A., Novikov S. P., Fomenko A. T., Modern Geometry, part 11, ch. 6, Nauka, M., 1979 | MR

[34] Deser S.. Jackiw R., Templeton S., Ann. Phys., 140 (1982), 372–387 | DOI | MR

[35] Nissimov E. R., Pacheva S. J., Lett. Math. Phys., 5 (1981), 67–69 ; 6 (1982), 361–363 | DOI | MR | DOI | MR

[36] Niemi A. J., Nucl. Phys., B253:1 (1985), 14–46 | DOI | MR

[37] Reed M., Simon B., Methods of Modern Mathematical Physics. IV. Analysis of Operators, Ch. XIII, Acad. Press, 1979 | MR | Zbl