Liquid-gas critical point in the method of collective variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 264-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Partition function of $N$ atoms interacting via long-range and short-range potentials is presented in the form of functional integrals. It is shown that the problem can be formulated by means of some adequate lattice. Coefficients of the expression obtained are functions of the wave vectors of this lattice and can be reduced to the functions dependent only on the average density of the particles. As a result, a possibility appears to calculate the partition function of liquid-gas system by the methods developed previously for the Ising model.
@article{TMF_1987_73_2_a9,
     author = {I. M. Idzik and V. A. Kolomiets and I. R. Yukhnovskii},
     title = {Liquid-gas critical point in the method of collective variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--280},
     year = {1987},
     volume = {73},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a9/}
}
TY  - JOUR
AU  - I. M. Idzik
AU  - V. A. Kolomiets
AU  - I. R. Yukhnovskii
TI  - Liquid-gas critical point in the method of collective variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 264
EP  - 280
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a9/
LA  - ru
ID  - TMF_1987_73_2_a9
ER  - 
%0 Journal Article
%A I. M. Idzik
%A V. A. Kolomiets
%A I. R. Yukhnovskii
%T Liquid-gas critical point in the method of collective variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 264-280
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a9/
%G ru
%F TMF_1987_73_2_a9
I. M. Idzik; V. A. Kolomiets; I. R. Yukhnovskii. Liquid-gas critical point in the method of collective variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 264-280. http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a9/

[1] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980 | MR

[2] Yukhnovskii I. R., Vydelenie sistemy otscheta v metode kollektivnykh peremennykh, Preprint ITF-74-149R, ITF AN USSR, Kiev, 1974

[3] Zubarev D. N., DAN SSSR, 95:4 (1954), 757–760 | MR | Zbl

[4] Zwansig R. W., J. Chem. Phys., 22:8 (1964), 1420–1426 | DOI

[5] Barker J. A., Henderson D., J. Chem. Phys., 47:8 (1967), 2856–2861 | DOI

[6] Yukhnovskii I. R., Idzik I. M., Fizika mnogochastichnykh sistem, no. 3, Naukova dumka, Kiev, 1983, 18–31

[7] Yukhnovskii I. R., Fazovye perekhody vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, Kiev, 1985 | MR

[8] Yukhnovskii I. R., Idzik I. M., Termodinamicheskii predel vblizi kriticheskoi tochki zhidkost - par, Preprint ITF-85-97R, ITF AN USSR, Kiev, 1985

[9] Yukhnovskii I. R., Rudavskii Yu. K., UFZh, 22:2 (1977), 186–205

[10] Yukhnovskii I. R., Idzik I. M., Obosnovanie formy bazisnogo raspredeleniya vblizi tochki fazovogo perekhoda pervogo roda, Preprint ITF-83-88R, ITF AN USSR, Kiev, 1983

[11] Yukhnovskii I. R., K statisticheskoi teorii kondensirovannykh sistem s dalnodeistvuyuschimi vzaimodeistviyami, Preprint ITF-79-133R, ITF AN USSR, Kiev, 1979

[12] Carnahan W. F., Starling K. E., J. Chem. Phys., 51:2 (1969), 635–636 | DOI

[13] Fisher I. Z., Statisticheskaya teoriya zhidkostei, Gostekhizdat, M., 1961

[14] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, t. 1, Mir, M., 1978 | MR