Hamiltonian formalism of weakly nonlinear hydrodynamic systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 316-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of quasilinear equations are considered which are diagonalizable and Hamiltonian, with the condition $\partial_iv^i=0$ where $u_t^i=v^i(u)u_x^i$, $i=1,\dots,N$. Conservation laws of such systems are found as well as metrics and Poisson brackets. By concrete examples the procedure of finding the solutions is demonstrated. Conditions of the existence of solutions and continuity of commuting flows are pointed out.
@article{TMF_1987_73_2_a15,
     author = {M. V. Pavlov},
     title = {Hamiltonian formalism of weakly nonlinear hydrodynamic systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {316--320},
     year = {1987},
     volume = {73},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a15/}
}
TY  - JOUR
AU  - M. V. Pavlov
TI  - Hamiltonian formalism of weakly nonlinear hydrodynamic systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 316
EP  - 320
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a15/
LA  - ru
ID  - TMF_1987_73_2_a15
ER  - 
%0 Journal Article
%A M. V. Pavlov
%T Hamiltonian formalism of weakly nonlinear hydrodynamic systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 316-320
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a15/
%G ru
%F TMF_1987_73_2_a15
M. V. Pavlov. Hamiltonian formalism of weakly nonlinear hydrodynamic systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 316-320. http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a15/

[1] Dubrovin B. A., Novikov S. P., DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[2] Tsarev S. P., DAN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[3] Novikov S. P., UMN, 40:4(244) (1985), 79–89 | MR

[4] Tsarev S. P., UMN, 39:6(240) (1984), 209–210 | MR | Zbl

[5] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1986 | MR

[6] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973 | MR

[7] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1968 | MR | Zbl

[8] Zakharov V. E., Funkts. analiz i ego prilozh., 14:2 (1980), 15–24 | MR | Zbl