Representation of symmetry group transformation operators in the interaction picture
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 311-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A representation similar to the Dyson time-ordered exponent is obtained for the operators of arbitrary continuous symmetry group transformations of interacting quantum field system. The exponent is given by the integral of the interaction Hamiltonian density in the Dirac picture over the space-time region determined by the symmetry transformation.
@article{TMF_1987_73_2_a14,
     author = {G. P. Jorjadze and A. N. Kvinikhidze and A. M. Khvedelidze},
     title = {Representation of symmetry group transformation operators in the interaction picture},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--315},
     year = {1987},
     volume = {73},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a14/}
}
TY  - JOUR
AU  - G. P. Jorjadze
AU  - A. N. Kvinikhidze
AU  - A. M. Khvedelidze
TI  - Representation of symmetry group transformation operators in the interaction picture
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 311
EP  - 315
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a14/
LA  - ru
ID  - TMF_1987_73_2_a14
ER  - 
%0 Journal Article
%A G. P. Jorjadze
%A A. N. Kvinikhidze
%A A. M. Khvedelidze
%T Representation of symmetry group transformation operators in the interaction picture
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 311-315
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a14/
%G ru
%F TMF_1987_73_2_a14
G. P. Jorjadze; A. N. Kvinikhidze; A. M. Khvedelidze. Representation of symmetry group transformation operators in the interaction picture. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 311-315. http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a14/

[1] Dyson F. J., Phys. Rev., 75 (1949), 486–502 ; 1736–1755 | DOI | MR | Zbl | MR | Zbl

[2] Kvinikhidze A. N., Matveev V. A., Khvedelidze A. M., Kovariantnyi operator evolyutsii v sostavnykh modelyakh kvantovoi teorii polya, Preprint R2-86-219, OIYaI, Dubna, 1986

[3] Vaitman A. S., Problemy v relyativistskoi dinamike kvantovannykh polei, Fizmatgiz, M., 1968