Stationary regime for the quantum dynamics of particles in a randomly varying potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 281-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum dynamics of particles in time-dependent random potential field with Gaussian distribution of realisations probabilities in unbounded space is studied. A constant absorption and monoenergetic extended source of particles are introduced into the Schrödinger equation. The moment of switching-on the source is shifted to the infinite past. Assuming that the fluctuations of the random potential are stationary, the existence of stationary limit for the density matrix averaged over potential realisations is proved. It is checked that in the weak interaction approximation, when additionally the absorption length and spatial scale of the source of particles are of the same order as the free run length, the limit mentioned satisfies the usual stationary equation of radiation transport in scattering medium.
@article{TMF_1987_73_2_a10,
     author = {Yu. N. Barabanenkov},
     title = {Stationary regime for the quantum dynamics of particles in a~randomly varying potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {281--293},
     year = {1987},
     volume = {73},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a10/}
}
TY  - JOUR
AU  - Yu. N. Barabanenkov
TI  - Stationary regime for the quantum dynamics of particles in a randomly varying potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 281
EP  - 293
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a10/
LA  - ru
ID  - TMF_1987_73_2_a10
ER  - 
%0 Journal Article
%A Yu. N. Barabanenkov
%T Stationary regime for the quantum dynamics of particles in a randomly varying potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 281-293
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a10/
%G ru
%F TMF_1987_73_2_a10
Yu. N. Barabanenkov. Stationary regime for the quantum dynamics of particles in a randomly varying potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 2, pp. 281-293. http://geodesic.mathdoc.fr/item/TMF_1987_73_2_a10/

[1] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[2] Krylov N. M., Bogolyubov N. N., Zap. kafedry matem. fiziki, T. 4, Izd-vo AN USSR, Kiev, 1939, 5–80

[3] Papanicolaou G. C., J. Math. Phys., 13:12 (1972), 1912–1918 | DOI | MR | Zbl

[4] Spohn H., J. Stat. Phys., 17:16 (1977), 385–412 | DOI | MR | Zbl

[5] Barabanenkov Yu. N., Ozrin V. D., Kalinin M. I., Asimptoticheskii metod v teorii stokhasticheskikh lineinykh dinamicheskikh sistem, Energoatomizdat, M., 1985 | MR

[6] Van Hove L., Physica, 21:6 (1955), 517–540 | MR

[7] Bogolyubov N. N., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Kiev, 1945 | MR

[8] Spohn H., Commun. Math. Phys., 60:3 (1978), 277–290 | DOI | MR | Zbl

[9] Babkin G. I., Klyatskin V. I., Kozlov V. F., Yaroschuk E. V., Izv. vuzov. Radiofizika, 24:8 (1981), 952–959

[10] Fon Neiman Dzh., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[12] Klyatskin V. I., Tatarskii V. I., TMF, 17:2 (1973), 273–282

[13] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[14] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 3. Teoriya rasseyaniya, Mir, M., 1982 | MR

[15] Jauch J. M., Helv. Phys. Acta., 31:2 (1958), 127–158 | MR | Zbl