Conformal symmetry in two-dimensional space: Recursion representation of conformal block
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 103-110
Voir la notice de l'article provenant de la source Math-Net.Ru
4-point conformal block plays an important part in the analysis of the conformal
invariant operator algebra in two-dimensional space. Asymptotics of the conformal block
is calculated in the limit when the dimension $\Delta$ of the intermediate operator tends to
infinity. This makes it possible to construct a recurrent relationship for this function
connecting the conformal block with arbitrary $\Delta$ with the blocks corresponding to the
dimensions of zero vectors in degenerate representations of Virasoro algebra. This relationship
is useful for calculating the conformal block expansion in powers of the uniformizing
parameter $q=\mathrm{exp}\,i \pi\tau$.
@article{TMF_1987_73_1_a9,
author = {Al. B. Zamolodchikov},
title = {Conformal symmetry in two-dimensional space: {Recursion} representation of conformal block},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {103--110},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/}
}
TY - JOUR AU - Al. B. Zamolodchikov TI - Conformal symmetry in two-dimensional space: Recursion representation of conformal block JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 103 EP - 110 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/ LA - ru ID - TMF_1987_73_1_a9 ER -
Al. B. Zamolodchikov. Conformal symmetry in two-dimensional space: Recursion representation of conformal block. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 103-110. http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/