Conformal symmetry in two-dimensional space: Recursion representation of conformal block
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 103-110
Cet article a éte moissonné depuis la source Math-Net.Ru
4-point conformal block plays an important part in the analysis of the conformal invariant operator algebra in two-dimensional space. Asymptotics of the conformal block is calculated in the limit when the dimension $\Delta$ of the intermediate operator tends to infinity. This makes it possible to construct a recurrent relationship for this function connecting the conformal block with arbitrary $\Delta$ with the blocks corresponding to the dimensions of zero vectors in degenerate representations of Virasoro algebra. This relationship is useful for calculating the conformal block expansion in powers of the uniformizing parameter $q=\mathrm{exp}\,i \pi\tau$.
@article{TMF_1987_73_1_a9,
author = {Al. B. Zamolodchikov},
title = {Conformal symmetry in two-dimensional space: {Recursion} representation of conformal block},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {103--110},
year = {1987},
volume = {73},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/}
}
TY - JOUR AU - Al. B. Zamolodchikov TI - Conformal symmetry in two-dimensional space: Recursion representation of conformal block JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 103 EP - 110 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/ LA - ru ID - TMF_1987_73_1_a9 ER -
Al. B. Zamolodchikov. Conformal symmetry in two-dimensional space: Recursion representation of conformal block. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 103-110. http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/
[1] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys., B241 (1984), 333–373 | DOI | MR
[2] Polyakov A. M., ZhETF, 66 (1974), 23 | MR
[3] Kac V. G., Infinitedimensional Lie algebras, Progr. Math., 44, Birkhäuser, Boston, 1984 | MR
[4] Zamolodchikov Al. B., Commun. Math. Phys., 96 (1984), 419 | DOI | MR
[5] Zamolodchikov Al. B., ZhETF, 90 (1986), 1808–1818 | MR
[6] Dotsenko Vl. S., Fateev V. A., Nucl. Phys., B251 [FS 13] (1985), 691 | DOI | MR