Conformal symmetry in two-dimensional space: Recursion representation of conformal block
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 103-110

Voir la notice de l'article provenant de la source Math-Net.Ru

4-point conformal block plays an important part in the analysis of the conformal invariant operator algebra in two-dimensional space. Asymptotics of the conformal block is calculated in the limit when the dimension $\Delta$ of the intermediate operator tends to infinity. This makes it possible to construct a recurrent relationship for this function connecting the conformal block with arbitrary $\Delta$ with the blocks corresponding to the dimensions of zero vectors in degenerate representations of Virasoro algebra. This relationship is useful for calculating the conformal block expansion in powers of the uniformizing parameter $q=\mathrm{exp}\,i \pi\tau$.
@article{TMF_1987_73_1_a9,
     author = {Al. B. Zamolodchikov},
     title = {Conformal symmetry in two-dimensional space: {Recursion} representation of conformal block},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/}
}
TY  - JOUR
AU  - Al. B. Zamolodchikov
TI  - Conformal symmetry in two-dimensional space: Recursion representation of conformal block
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 103
EP  - 110
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/
LA  - ru
ID  - TMF_1987_73_1_a9
ER  - 
%0 Journal Article
%A Al. B. Zamolodchikov
%T Conformal symmetry in two-dimensional space: Recursion representation of conformal block
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 103-110
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/
%G ru
%F TMF_1987_73_1_a9
Al. B. Zamolodchikov. Conformal symmetry in two-dimensional space: Recursion representation of conformal block. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 103-110. http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a9/