Geometry of classical mechanics with non-Abelian gauge symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometry of the gauge orbit bundle is considered for the $SO(3)$ Yang–Mills mechanics. It is shown that it may serve as a finite-dimensional model of the geometry of nonabelian field theory with respect to such properties as the nonexistence of a global gauge, the Gribov ambiguities, convexity of the region within the corresponding horizon and stratification. The connection and the Lagrangian on the orbit space are obtained.
@article{TMF_1987_73_1_a0,
     author = {M. A. Soloviev},
     title = {Geometry of classical mechanics with {non-Abelian} gauge symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a0/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Geometry of classical mechanics with non-Abelian gauge symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 3
EP  - 15
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a0/
LA  - ru
ID  - TMF_1987_73_1_a0
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Geometry of classical mechanics with non-Abelian gauge symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 3-15
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a0/
%G ru
%F TMF_1987_73_1_a0
M. A. Soloviev. Geometry of classical mechanics with non-Abelian gauge symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 73 (1987) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/TMF_1987_73_1_a0/