Turbulent dynamo as spontaneous symmetry breaking
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 3, pp. 369-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Problem of large-scale turbulent dynamo in gyrotropic liquid is considered in the framework of quantum field-theoretical formulation of stochastic magnetic hydrodynamics [1]. It is shown that the gyrotropness (breaking of parity conservation) leads to instability which stabilizes itself by means of spontaneous arising of non-vanishing average of homogeneous magnetic field. The existence in the dynamo regime of specific long-living perturbations of the Alfven waves is predicted. Renormalization group and critical dimensions of all quantities considered are discussed.
@article{TMF_1987_72_3_a4,
     author = {L. Ts. Adzhemyan and A. N. Vasil'ev and M. Gnatich},
     title = {Turbulent dynamo as spontaneous symmetry breaking},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--383},
     year = {1987},
     volume = {72},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a4/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - A. N. Vasil'ev
AU  - M. Gnatich
TI  - Turbulent dynamo as spontaneous symmetry breaking
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 369
EP  - 383
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a4/
LA  - ru
ID  - TMF_1987_72_3_a4
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A A. N. Vasil'ev
%A M. Gnatich
%T Turbulent dynamo as spontaneous symmetry breaking
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 369-383
%V 72
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a4/
%G ru
%F TMF_1987_72_3_a4
L. Ts. Adzhemyan; A. N. Vasil'ev; M. Gnatich. Turbulent dynamo as spontaneous symmetry breaking. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 3, pp. 369-383. http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a4/

[1] Adzhemyan L. Ts., Vasilev A. N., Gnatich M., TMF, 64:2 (1985), 196–207 | Zbl

[2] Martin P. C., Siggia E. D., Rose H. A., Phys. Rev., A8 (1973), 423–437 | DOI

[3] De Dominicis, Peliti L., Phys. Rev., B18 (1978), 353–376 | DOI

[4] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 57:2 (1983), 268–281 | MR | Zbl

[5] Hohenberg P. C., Halperin B. I., Rev. Mod. Phys., 49:3 (1977), 435–479 | DOI

[6] De Dominicis, Martin P. C., Phys. Rev., A19 (1979), 419–421 | DOI

[7] Adzhemyan L. Ts., Vasilev A. N., Gnatich M., TMF, 58:1 (1984), 72–78 | Zbl

[8] Vainshtein S. I., Zeldovich Ya. B., Ruzmaikin A. A., Turbulentnoe dinamo v astrofizike, Nauka, M., 1980

[9] Vainshtein S. I., Magnitnye polya v kosmose, Nauka, M., 1983

[10] Moffat G., Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980

[11] Coleman S., Weinberg E., Phys. Rev., D7 (1973), 1888

[12] Vilson K., Kogut Dzh., Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975

[13] Moiseev S. S., Sagdeev R. 3., Tur A. V., Khomenko G. A., Yanovskii V. V., ZhETF, 85:6(12) (1983), 1979–1987 | MR

[14] Pouquet A., Fournier J. D., Sulem P. L., J. Phys. Lett. (Paris), 39L (1978), 199–204 | DOI

[15] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976

[16] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[17] Kraichnan R. H., Phys. Fluids, 8 (1965), 1385–1387 | DOI | MR

[18] Bogolyubov N. N., Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint D-788, OIYaI, Dubna, 1961