Qualitative analysis and calculations of finite-gap solutions of the Korteweg–de Vries equation. Automorphic approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 3, pp. 352-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Schottky uniformisation theory is used to obtain new formulas for the characteristics of finite-gap solutions of the KdV equation. Waive number phase velocities and amplitudes are expressed in terms of Poincare series. Numerical results obtained by the method proposed are presented.
@article{TMF_1987_72_3_a2,
     author = {A. I. Bobenko and D. A. Kubenskii},
     title = {Qualitative analysis and calculations of finite-gap solutions of the {Korteweg{\textendash}de~Vries} equation. {Automorphic} approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {352--360},
     year = {1987},
     volume = {72},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a2/}
}
TY  - JOUR
AU  - A. I. Bobenko
AU  - D. A. Kubenskii
TI  - Qualitative analysis and calculations of finite-gap solutions of the Korteweg–de Vries equation. Automorphic approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 352
EP  - 360
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a2/
LA  - ru
ID  - TMF_1987_72_3_a2
ER  - 
%0 Journal Article
%A A. I. Bobenko
%A D. A. Kubenskii
%T Qualitative analysis and calculations of finite-gap solutions of the Korteweg–de Vries equation. Automorphic approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 352-360
%V 72
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a2/
%G ru
%F TMF_1987_72_3_a2
A. I. Bobenko; D. A. Kubenskii. Qualitative analysis and calculations of finite-gap solutions of the Korteweg–de Vries equation. Automorphic approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 3, pp. 352-360. http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a2/

[1] Dubrovin B. A., Matveev V. B., Novikov S. P., UMN, 31:1 (1976), 55–136 | MR | Zbl

[2] Dubrovin B. A., UMN, 36:2 (1981), 11–80 | MR | Zbl

[3] Nakamura A. A., J. Phys. Soc. Japan, 47 (1979), 1701 ; 48, 1365 | DOI | MR | Zbl | DOI

[4] Boyd J. P., J. Math. Phys., 25:12 (1984), 3390–3423 | DOI | MR

[5] Bobenko A. I., DAN SSSR, 295:2 (1987), 000–000

[6] Bobenko A. I., Zap. nauchn. semin. LOMI, 165, 1987, 000–000

[7] Its A. R., Matveev V. B., TMF, 23:1 (1975), 51–68 | MR

[8] Burnside W., Proc. London Math. Soc., 23 (1892), 49–88 | DOI

[9] Schottky F., J. Reine Angew. Math., 101 (1887), 227–272 | MR

[10] Baker H. F., Abelis theorem and the allied theory including the theory of the theta function, Cambridge, 1897

[11] Burnside W., Proc. London Math. Soc., 23 (1892), 283–295

[12] Ford L. R., Avtomorfnye funktsii, ONTI, M., 1936

[13] Igusa J., “Theta-Functions”, Grund. Math. Wiss., 194, Springer, 1972 | MR | Zbl