Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 3, pp. 323-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the generic position case properties of the variations of scattering data are studied for a smooth fast decreasing potential of the Sturm–Liouville problem. Orthogonality and completeness relations for bilinear combinations of the lost solutions of this problem are formulated in a more precise form and properties of the recursion operator and its resolvent are thoroughly analysed.
@article{TMF_1987_72_3_a0,
     author = {V. A. Arkad'ev and A. K. Pogrebkov and M. K. Polivanov},
     title = {Expansions with respect to squares, symplectic and poisson structures associated with the {Sturm{\textendash}Liouville} {problem.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--339},
     year = {1987},
     volume = {72},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a0/}
}
TY  - JOUR
AU  - V. A. Arkad'ev
AU  - A. K. Pogrebkov
AU  - M. K. Polivanov
TI  - Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 323
EP  - 339
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a0/
LA  - ru
ID  - TMF_1987_72_3_a0
ER  - 
%0 Journal Article
%A V. A. Arkad'ev
%A A. K. Pogrebkov
%A M. K. Polivanov
%T Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 323-339
%V 72
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a0/
%G ru
%F TMF_1987_72_3_a0
V. A. Arkad'ev; A. K. Pogrebkov; M. K. Polivanov. Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 3, pp. 323-339. http://geodesic.mathdoc.fr/item/TMF_1987_72_3_a0/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] Kulish P. P., Reiman A. G., Zap. nauchn. semin. LOMI, 77, 1978, 134–147 | MR | Zbl

[3] Gelfand I. M., Dorfman I. Ya., Funkts. analiz i ego prilozh., 14:3 (1980), 71–74 ; 15:3 (1981), 23–40 | MR | Zbl | MR | Zbl

[4] Barcilon V., J. Math. Phys., 15:14 (1974), 429–436 | DOI | MR | Zbl

[5] Kirchev K. P., Khristov E. Kh., SMZh, 21:3 (1980), 98–109 | MR | Zbl

[6] Nyuell A., “Obratnoe preobrazovanie rasseyaniya”, Solitony, Mir, M., 1983, 193–269

[7] Khristov E. Kh., Differents. uravneniya, 19:9 (1983), 1548–1557 | MR | Zbl

[8] Ablowitz M. J., Kaup D. J., Newel A. C., Segur H., Studies in Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[9] Zakharov V. E., Faddeev L. D., Funkts. analiz i ego prilozh., 5:4 (1971), 18–27 | MR | Zbl

[10] Krichever I. M., DAN SSSR, 270:6 (1983), 1312–1317 | MR | Zbl

[11] Faddeev L. D., Takhtajan L. A., Lett. Math. Phys., 10:2–3 (1985), 231–236 | MR

[12] Buslaev V. S., Faddeev L. D., Takhtajan L. A., Physica D, 18 (1986), 255–266 | DOI | MR | Zbl

[13] Kalodzhero F., Degasperis A., Spektralnye preobrazovaniya i solitony. Metody resheniya i issledovaniya nelineinykh evolyutsionnykh uravnenii, Mir, M., 1985 | MR

[14] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR