Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 255-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cluster expansion of the Hamiltonian of the phase separating boundary is introduced and the conditions on this expansion are found which guarantee the validity of the results obtained in the first part of this paper. The results are applied to manycomponent models with the block structure of the matrix of nearest neighbours interaction and also to non-finite perturbations of such models, to perturbations of the Potts model at large $N$ and to one of the models of the “gas – rigid crystal” type.
@article{TMF_1987_72_2_a8,
     author = {A. G. Basuev},
     title = {Hamiltonian of the phase separation border and phase transitions of the first {kind.~II.} {The} simplest disordered phases},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {255--268},
     year = {1987},
     volume = {72},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a8/}
}
TY  - JOUR
AU  - A. G. Basuev
TI  - Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 255
EP  - 268
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a8/
LA  - ru
ID  - TMF_1987_72_2_a8
ER  - 
%0 Journal Article
%A A. G. Basuev
%T Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 255-268
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a8/
%G ru
%F TMF_1987_72_2_a8
A. G. Basuev. Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 255-268. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a8/

[1] Pirogov S. A., Sinai Ya. G., TMF, 25:3 (1975), 358–369 | MR

[2] Pirogov S. A., Sinai Ya. G., TMF, 26:1 (1976), 61–76 | MR

[3] Kotecky R., Preiss D., Proc. Winter School on Abstract Analisis. Supll. Ai. Rend. del Circ. Mat. di Palerma, 1983

[4] Zagradnik M., Commun. Math. Phys., 93 (1984), 559–581 | DOI | MR

[5] Bricmont J., Kuroda K., Lebowitz J. L., Z. Wahrscheinkeistheorie, 67 (1984), 121–136 | DOI | MR

[6] Basuev A. G., TMF, 58:2 (1984), 261–278 | MR

[7] Imbrie J. Z., Commun. Math. Phys., 82 (1981), 261–280 ; 83 (1982), 305–324 | DOI | MR | MR

[8] Bricmont J., Kuroda K., Lebowitz J. L., Commun. Math. Phys., 101 (1985), 501–538 | DOI | MR | Zbl

[9] Basuev A. G., TMF, 64:1 (1985), 103–129 | MR

[10] Dinaburg E. I., Sinai Ya. G., Tr. mezhdunarodnogo simpoziuma po izbrannym problemam statisticheskoi mekhaniki, T. 1, OIYaI, Dubna, 1984, 255–287

[11] Malyshev V. A., Minlos R. A., Petrova E. N., Terletskii Yu. A., Itogi nauki i tekhniki. Teoriya veroyatnostei, matematicheskaya statistika, teoreticheskaya kibernetika, 19, VINITI, M., 1982, 3–54 | MR | Zbl

[12] Kotecky R., Shlosman S. B., Commun. Math. Phys., 82 (1982), 493–505 | DOI | MR

[13] Parsonidzh N., Steivli L., Besporyadok v kristallakh, T. 1, Mir, M., 1982

[14] Vaks V. G., Zinchenko V. I., Shneider V. E., UFN, 141:4, 629–673

[15] Duneau M., Souillard B., Commun. Math. Phys., 47 (1976), 155–166 | DOI | MR

[16] Malyshev V. A., Minlos R. A., Gibbsovskie sluchainye polya, Nauka, M., 1985 | MR

[17] Basuev A. G., TMF, 57:3 (1983), 338–353 | MR

[18] Ryuel D., Statisticheskaya mekhanika, Mir, M., 1971

[19] Potts R. B., Proc. Camb. Phis. Soc., 48 (1952), 106–112 | DOI | MR

[20] Bekster R., Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR