Maxwell-lagrange system in the theory of optical and magnetic resonances
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 244-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum-mechanical approach is used to tackle the problem of interaction of electromagnetic field with medium which is approximated by an ensemble of two-level particles. A quantum-mechanical system of equations of motion is obtained for phenomena of optical and magnetic resonance. This system has a classical analogue, the system of Lagrange–Poisson equations. Propagation effects in the approach under consideration are described by the nonlinear Maxwell–Lagrange system which can be presented in the form of connected systems of linear equations of inverse scattering theory. A hierarchy of nonlinear evolutionary equations is derived which includes sine-Gordon, nonlinear Schrödinger and Korteveg–de Vries equations.
@article{TMF_1987_72_2_a7,
     author = {E. I. Bogdanov},
     title = {Maxwell-lagrange system in the theory of optical and magnetic resonances},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {244--254},
     year = {1987},
     volume = {72},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a7/}
}
TY  - JOUR
AU  - E. I. Bogdanov
TI  - Maxwell-lagrange system in the theory of optical and magnetic resonances
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 244
EP  - 254
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a7/
LA  - ru
ID  - TMF_1987_72_2_a7
ER  - 
%0 Journal Article
%A E. I. Bogdanov
%T Maxwell-lagrange system in the theory of optical and magnetic resonances
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 244-254
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a7/
%G ru
%F TMF_1987_72_2_a7
E. I. Bogdanov. Maxwell-lagrange system in the theory of optical and magnetic resonances. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 244-254. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a7/

[1] Fain V. M., Khanin Ya. I., Kvantovaya radiofizika, Sov. radio, M., 1965

[2] Allen L., Eberli Dzh., Opticheskii rezonans i dvukhurovnevye atomy, Mir, M., 1978

[3] Brankov I. G., Zagrebnov V. A., Tonchev N. S., TMF, 22:1 (1975), 20–30 | MR

[4] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GITL, M., 1953 | MR

[5] Perelomov A. M., UFN, 123:1 (1977), 23–57 | DOI

[6] Takeno S., Hagashima M., Sugimoto J., J. Phys. Soc. Japan, 41:3 (1976), 921–928 | DOI

[7] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR