Maxwell-lagrange system in the theory of optical and magnetic resonances
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 244-254
Cet article a éte moissonné depuis la source Math-Net.Ru
Quantum-mechanical approach is used to tackle the problem of interaction of electromagnetic field with medium which is approximated by an ensemble of two-level particles. A quantum-mechanical system of equations of motion is obtained for phenomena of optical and magnetic resonance. This system has a classical analogue, the system of Lagrange–Poisson equations. Propagation effects in the approach under consideration are described by the nonlinear Maxwell–Lagrange system which can be presented in the form of connected systems of linear equations of inverse scattering theory. A hierarchy of nonlinear evolutionary equations is derived which includes sine-Gordon, nonlinear Schrödinger and Korteveg–de Vries equations.
@article{TMF_1987_72_2_a7,
author = {E. I. Bogdanov},
title = {Maxwell-lagrange system in the theory of optical and magnetic resonances},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {244--254},
year = {1987},
volume = {72},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a7/}
}
E. I. Bogdanov. Maxwell-lagrange system in the theory of optical and magnetic resonances. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 244-254. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a7/
[1] Fain V. M., Khanin Ya. I., Kvantovaya radiofizika, Sov. radio, M., 1965
[2] Allen L., Eberli Dzh., Opticheskii rezonans i dvukhurovnevye atomy, Mir, M., 1978
[3] Brankov I. G., Zagrebnov V. A., Tonchev N. S., TMF, 22:1 (1975), 20–30 | MR
[4] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GITL, M., 1953 | MR
[5] Perelomov A. M., UFN, 123:1 (1977), 23–57 | DOI
[6] Takeno S., Hagashima M., Sugimoto J., J. Phys. Soc. Japan, 41:3 (1976), 921–928 | DOI
[7] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR