Canonical quantization of theories with higher derivatives. Quantization of $R^2$ gravitation
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 204-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of Ostrogradsky's method for bringing theories with higher derivatives to the hamiltonian form is developed which is fit for applications to gauge fields theories. Hamiltonian formalism for the theory with the Lagrangian ${\mathcal L}=\sqrt{-g}(\Lambda -(1/\chi^2)R +aR_{\mu\nu} R^{\mu\nu} +bR^2)$ is formulated. Structure of constraints of this theory is investigated and it is shown that five essentially different variants of the theory are possible depending on the relationships between the parameters $\Lambda, \chi, a, b$. For all these variants canonical quantization is performed and local measure in the continual integral is found. The general form of the local measure is found for an arbitrary bosonic theory interacting with gravity. ${\mathcal L}=\sqrt{-g}(\Lambda -(1/\chi^2)R +aR_{\mu\nu} R^{\mu\nu} +bR^2)$. Исследована структура связей такой теории и показано, что в зависимости от соотношения между параметрами
@article{TMF_1987_72_2_a4,
     author = {I. L. Buchbinder and S. L. Lyakhovich},
     title = {Canonical quantization of theories with higher derivatives. {Quantization} of $R^2$ gravitation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {204--218},
     year = {1987},
     volume = {72},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a4/}
}
TY  - JOUR
AU  - I. L. Buchbinder
AU  - S. L. Lyakhovich
TI  - Canonical quantization of theories with higher derivatives. Quantization of $R^2$ gravitation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 204
EP  - 218
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a4/
LA  - ru
ID  - TMF_1987_72_2_a4
ER  - 
%0 Journal Article
%A I. L. Buchbinder
%A S. L. Lyakhovich
%T Canonical quantization of theories with higher derivatives. Quantization of $R^2$ gravitation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 204-218
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a4/
%G ru
%F TMF_1987_72_2_a4
I. L. Buchbinder; S. L. Lyakhovich. Canonical quantization of theories with higher derivatives. Quantization of $R^2$ gravitation. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 204-218. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a4/

[1] Utiama R., DeWitt B. S., J. Math. Phys., 3 (1962), 608 | DOI | MR

[2] Weinberg S., Proc. XVII Intern. Conf. on Higher Energy Physics, ed. J. R. Smith, Chilton Didcot, 1974

[3] Deser S., Proc. Conf. on Gauge Theory and Modern Field Theory, eds. R. Arnowitt, P. Nath, MIT Press, Cambridge, 1975

[4] Veinberg S., Obschaya teoriya otnositelnosti, Mir, M., 1983, 407–455

[5] Tomboulis E., Quantum Theory of Gravity, ed. S. M. Christensen, Adam Hilger Ltd, Bristol, 1984 | MR

[6] Boulware D. G., Quantum Theory of Gravity, ed. S. M. Christensen, Adam Hilger Ltd, Bristol, 1984 | MR

[7] Stelle K. S., Phys. Rev., 16D:4 (1977), 953–969 | MR

[8] Voronov B. L., Tyutin I. V., YaF, 39:4 (1984), 998–1010 | MR

[9] Fradkin E. S., Tseytlin A. A., Nucl. Phys., B201:2 (1982), 469–491 | DOI | MR

[10] Salam A., Stradthee J., Phys. Rev., 18D:12 (1978), 4480–4485 | MR

[11] Tomboulis E., Phys. Lett., B70:32 (1977), 361–364 | DOI

[12] Tomboulis E., Phys. Lett., B97:1 (1980), 77–80 | DOI | MR

[13] Hasslacher B., Mottola E., Phys. Lett., 99B:3 (1981), 221–224 | DOI | MR

[14] Tomboulis E., Phys. Rev. Lett., 52:14 (1984), 1173–1176 | DOI

[15] Dirak P. A. M., Noveishie problemy gravitatsii, IL, M., 1961

[16] Arnovitt R., Dezer S., Misner K. V., Einshteinovskii sbornik, Nauka, M., 1967, 233–286

[17] DeWitt B. S., Phys. Rev., 160:5 (1967), 1113–1148 | DOI | Zbl

[18] Faddeev L. D., Popov V. N., UFN, 111 (1973), 428–450 | MR

[19] Fradkin E. S., Vilkovsky G. A., Phys. Rev., 8D:12 (1973), 2241–2285 | MR

[20] Fradkin E. S., Vilkovsky G. A., Quantization of relativistic systems with constraints. Equivalence of canonical and covariant formalism in quantum theory of gravitional field, Preprint TH2332, CERN, Geneva, 1977 | MR

[21] Kaku M., Nucl. Phys., B203:2 (1982), 285–296 | DOI | MR

[22] Kaku M., Phys. Rev., D27:12 (1983), 2809–2818 | MR

[23] Kaku M., Phys. Rev., D27:12 (1983), 2819–2834 | MR

[24] Boulware D. G., Horowitz G. T., Strominger A., Phys. Rev. Lett., 50:22 (1983), 1726–1729 | DOI | MR

[25] Bukhbinder I. L., Lyakhovich S. L., Izv. vuzov. Fizika, 1985, no. 12, 3–9 | MR

[26] Blagoevic M., Nikolich I. A., Phys. Rev., D28:10 (1983), 2455–2463

[27] Kawasaki S., Kimura T., Progr. Theor. Phys., 66:6 (1981), 2085–2102 | DOI

[28] Kawasaki S., Kimura T., Progr. Theor. Phys., 68:5 (1982), 1749–1764 | DOI | MR

[29] Kawasaki S., Kimura T., Progr. Theor. Phys., 69:3 (1983), 1015–1030 | DOI

[30] Kugo T., Ojima I., Progr. Theor. Phys., Suppl., 1979, no. 66, 1–76 | DOI | MR

[31] Gitman D. M., Lyakhovich S. L., Tyutin I. V., Izv. vuzov. Fizika, 1983, no. 8, 61–66 | MR

[32] Ostrogradskii M. V., Variatsionnye printsipy mekhaniki, ed. Polak L. S., Fizmatgiz, M., 1959 | MR

[33] Dirak P. A. M., Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[34] Faddeev L. D., TMF, 1:1 (1969), 3–18 | MR | Zbl

[35] Fradkin E. S., Acta Univ. Wratisl., 1973, no. 207, 93–115 | MR

[36] Senjanovich P., Ann. Phys., 100:2 (1976), 227–235 | DOI

[37] Ross D. K., J. Phys., A16:12 (1983), 3879–3884 | MR

[38] Capper D. M., Kimber D. F., J. Phys., A13:12 (1980), 3671–3676