Some exact solutions of a system of nonlinear Schrödinger equations in three-dimensional space
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 172-182
Cet article a éte moissonné depuis la source Math-Net.Ru
Most general interaction terms are constructed which reduce the symmetry group of the nonrelativistic Schrödinger equations to its one-parameter subgroups. Ansatze of invariant solutions of the Galilei-invariant Schrödinger equations and corresponding systems of reduced equations in terms of invariant variables are found. Some exact solutions of the system of nonlinear Schrödinger equations are obtained in three spatial dimensions for the case of the generalised Hubbard model.
@article{TMF_1987_72_2_a1,
author = {S. S. Moskalyuk},
title = {Some exact solutions of a~system of nonlinear {Schr\"odinger} equations in three-dimensional space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {172--182},
year = {1987},
volume = {72},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a1/}
}
TY - JOUR AU - S. S. Moskalyuk TI - Some exact solutions of a system of nonlinear Schrödinger equations in three-dimensional space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 172 EP - 182 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a1/ LA - ru ID - TMF_1987_72_2_a1 ER -
S. S. Moskalyuk. Some exact solutions of a system of nonlinear Schrödinger equations in three-dimensional space. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 172-182. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a1/
[1] Moskalyuk S. S., Ukr. fiz. zhurn., 26:6 (1981), 1045–1046 | MR
[2] Moskalyuk S. S., “Bazisy differentsialnykh invariantov gruppy Galileya i ee podgrupp”, Modelirovanie-85, teoriya, sredstva, primenenie, ch. 1, IPME AN USSR, Kiev, 1985, 54–56
[3] Moskalyuk S. S., Shelest V. P., “Teoretiko-gruppovye modeli nerelyativistskikh dinamicheskikh sistem”, Teoretiko-gruppovye metody v fizike. Trudy tretego seminara, t. 2 (Yurmala, 22–24 maya 1985 g.), Nauka, M., 1986, 323–329 | MR
[4] Niederer U., Helv. Phys. Acta, 45:8 (1972), 802–810 | MR
[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[6] Makhankov V. G., Fedyanin V. K., Phys. Rep., 104:1 (1984), 1–86 | DOI | MR