Some exact solutions of a system of nonlinear Schrödinger equations in three-dimensional space
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 172-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Most general interaction terms are constructed which reduce the symmetry group of the nonrelativistic Schrödinger equations to its one-parameter subgroups. Ansatze of invariant solutions of the Galilei-invariant Schrödinger equations and corresponding systems of reduced equations in terms of invariant variables are found. Some exact solutions of the system of nonlinear Schrödinger equations are obtained in three spatial dimensions for the case of the generalised Hubbard model.
@article{TMF_1987_72_2_a1,
     author = {S. S. Moskalyuk},
     title = {Some exact solutions of a~system of nonlinear {Schr\"odinger} equations in three-dimensional space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {172--182},
     year = {1987},
     volume = {72},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a1/}
}
TY  - JOUR
AU  - S. S. Moskalyuk
TI  - Some exact solutions of a system of nonlinear Schrödinger equations in three-dimensional space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 172
EP  - 182
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a1/
LA  - ru
ID  - TMF_1987_72_2_a1
ER  - 
%0 Journal Article
%A S. S. Moskalyuk
%T Some exact solutions of a system of nonlinear Schrödinger equations in three-dimensional space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 172-182
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a1/
%G ru
%F TMF_1987_72_2_a1
S. S. Moskalyuk. Some exact solutions of a system of nonlinear Schrödinger equations in three-dimensional space. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 172-182. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a1/

[1] Moskalyuk S. S., Ukr. fiz. zhurn., 26:6 (1981), 1045–1046 | MR

[2] Moskalyuk S. S., “Bazisy differentsialnykh invariantov gruppy Galileya i ee podgrupp”, Modelirovanie-85, teoriya, sredstva, primenenie, ch. 1, IPME AN USSR, Kiev, 1985, 54–56

[3] Moskalyuk S. S., Shelest V. P., “Teoretiko-gruppovye modeli nerelyativistskikh dinamicheskikh sistem”, Teoretiko-gruppovye metody v fizike. Trudy tretego seminara, t. 2 (Yurmala, 22–24 maya 1985 g.), Nauka, M., 1986, 323–329 | MR

[4] Niederer U., Helv. Phys. Acta, 45:8 (1972), 802–810 | MR

[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] Makhankov V. G., Fedyanin V. K., Phys. Rep., 104:1 (1984), 1–86 | DOI | MR