Equations of gas dynamics admitting an infinite number of symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 163-171
Cet article a éte moissonné depuis la source Math-Net.Ru
All the equations of state are found for which the one-dimensional gas dynamic equations possess an infinite Lie–Backlund algebra. In all these cases the gas dynamics equations are either explicitely integrable or can be presented in the Lax form. A method for constructing an infinite set of conservation laws is given.
@article{TMF_1987_72_2_a0,
author = {A. G. Meshkov and B. B. Mikhalyaev},
title = {Equations of gas dynamics admitting an infinite number of symmetries},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--171},
year = {1987},
volume = {72},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a0/}
}
TY - JOUR AU - A. G. Meshkov AU - B. B. Mikhalyaev TI - Equations of gas dynamics admitting an infinite number of symmetries JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 163 EP - 171 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a0/ LA - ru ID - TMF_1987_72_2_a0 ER -
A. G. Meshkov; B. B. Mikhalyaev. Equations of gas dynamics admitting an infinite number of symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a0/
[1] Ibragimov N. Kh., Shabat A. B., Funkts. analiz i ego prilozh., 14:4 (1980), 79–80 | MR | Zbl
[2] Zhiber A. V., Shabat A. B., DAN SSSR, 27:1 (1984), 29–33 | MR
[3] Mikhailov A. V., Shabat A. B., TMF, 62:2 (1985), 163–185 | MR | Zbl
[4] Sheftel M. B., TMF, 56:3 (1983), 368–386 | MR | Zbl
[5] Sedov L. I., Ploskie zadachi gidrodinamiki i aerodinamiki, Nauka, M., 1966 | MR