Equations of gas dynamics admitting an infinite number of symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 163-171
Voir la notice de l'article provenant de la source Math-Net.Ru
All the equations of state are found for which the one-dimensional gas dynamic
equations possess an infinite Lie–Backlund algebra. In all these cases the gas dynamics
equations are either explicitely integrable or can be presented in the Lax form.
A method for constructing an infinite set of conservation laws is given.
@article{TMF_1987_72_2_a0,
author = {A. G. Meshkov and B. B. Mikhalyaev},
title = {Equations of gas dynamics admitting an infinite number of symmetries},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--171},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a0/}
}
TY - JOUR AU - A. G. Meshkov AU - B. B. Mikhalyaev TI - Equations of gas dynamics admitting an infinite number of symmetries JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 163 EP - 171 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a0/ LA - ru ID - TMF_1987_72_2_a0 ER -
A. G. Meshkov; B. B. Mikhalyaev. Equations of gas dynamics admitting an infinite number of symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a0/