$1/N$ expansion in the Gross-Neveu model with arbitrary number of fermion multiplets
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 1, pp. 68-78
Voir la notice de l'article provenant de la source Math-Net.Ru
Two-dimensional massless four-fermion theory (1) is considered which includes,
any number of fermionic multiplets in the leading order of $1/N$ expansion. The model is
asymptotically free. At any value of the coupling constant the chiral invariance is dynamically
broken and fermions get masses. For the case of two multiplets at least two
different phases with massive fermions are shown to exist. Conditions are found under
which the theory has no ghosts. Masses of boson states are calculated for the case of
equal fermion masses.
@article{TMF_1987_72_1_a6,
author = {K. G. Klimenko},
title = {$1/N$ expansion in the {Gross-Neveu} model with arbitrary number of fermion multiplets},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {68--78},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_1_a6/}
}
TY - JOUR AU - K. G. Klimenko TI - $1/N$ expansion in the Gross-Neveu model with arbitrary number of fermion multiplets JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 68 EP - 78 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1987_72_1_a6/ LA - ru ID - TMF_1987_72_1_a6 ER -
K. G. Klimenko. $1/N$ expansion in the Gross-Neveu model with arbitrary number of fermion multiplets. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 1, pp. 68-78. http://geodesic.mathdoc.fr/item/TMF_1987_72_1_a6/