$1/N$ expansion in the Gross-Neveu model with arbitrary number of fermion multiplets
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 1, pp. 68-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional massless four-fermion theory (1) is considered which includes, any number of fermionic multiplets in the leading order of $1/N$ expansion. The model is asymptotically free. At any value of the coupling constant the chiral invariance is dynamically broken and fermions get masses. For the case of two multiplets at least two different phases with massive fermions are shown to exist. Conditions are found under which the theory has no ghosts. Masses of boson states are calculated for the case of equal fermion masses.
@article{TMF_1987_72_1_a6,
     author = {K. G. Klimenko},
     title = {$1/N$ expansion in the {Gross-Neveu} model with arbitrary number of fermion multiplets},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--78},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_1_a6/}
}
TY  - JOUR
AU  - K. G. Klimenko
TI  - $1/N$ expansion in the Gross-Neveu model with arbitrary number of fermion multiplets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 68
EP  - 78
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_1_a6/
LA  - ru
ID  - TMF_1987_72_1_a6
ER  - 
%0 Journal Article
%A K. G. Klimenko
%T $1/N$ expansion in the Gross-Neveu model with arbitrary number of fermion multiplets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 68-78
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_1_a6/
%G ru
%F TMF_1987_72_1_a6
K. G. Klimenko. $1/N$ expansion in the Gross-Neveu model with arbitrary number of fermion multiplets. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 1, pp. 68-78. http://geodesic.mathdoc.fr/item/TMF_1987_72_1_a6/