Nonlinear Schrödinger equation and the bogolyubov-whitham method of averaging
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 351-356
Cet article a éte moissonné depuis la source Math-Net.Ru
Averaging of the type [1] for nonlinear Schrödinger equation (NSE) using finitezone averaging tecnique [2, 3] is investigated. In the one-zone case the results obtained are presented in the explicit form. Some characteristics of the original equation are averaged which are of use in applied calculations. Finally, recurrent and functional formulas are given which connect the densities of the motion integrals of NSE, fluxes and variational derivatives.
@article{TMF_1987_71_3_a4,
author = {M. V. Pavlov},
title = {Nonlinear {Schr\"odinger} equation and the bogolyubov-whitham method of averaging},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {351--356},
year = {1987},
volume = {71},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a4/}
}
M. V. Pavlov. Nonlinear Schrödinger equation and the bogolyubov-whitham method of averaging. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 351-356. http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a4/
[1] Dubrovin B. A., Novikov S. P., DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[2] Novikov S. P., UMN, 40:4 (1985), 79–89 | MR
[3] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR
[4] S. P. Novikov (red.), Teoriya solitonov, Nauka, M., 1980 | MR
[5] Flaschka F., Forest M. G., McLaughlin D. W., Commun. Pure and Appl. Math., 33 (1980), 739–784 | DOI | MR | Zbl
[6] Forest M. G., McLaughlin D. W., Modulations of sin-Gordon and sine-Gordon Wavetrains, Preprint, 1982 | MR