$p$-adic space-time and string theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 337-340
Cet article a éte moissonné depuis la source Math-Net.Ru
Arguments are presented in favour of the hypothesis suggesting the $p$-adic structure of the space-time. A $p$-adic analogue of the Veneziano amplitude is suggested which makes it possible to start the construction of the theory of $p$-adic strings. The same problems are considered over Galois fields in which case the analogue of the Veneziano amplitude is the Jacobi sum expressed in terms of $l$-adic cohomologies of Fermat curves. An expression for the vertex operator of corresponding string theory is given.
@article{TMF_1987_71_3_a2,
author = {I. V. Volovich},
title = {$p$-adic space-time and string theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {337--340},
year = {1987},
volume = {71},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a2/}
}
I. V. Volovich. $p$-adic space-time and string theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 337-340. http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a2/
[1] Arefeva I. Ya., Volovich I. V., UFN, 146:4 (1985), 655–681 | DOI | MR
[2] Vladimirov V. S., Volovich I. V., TMF, 59:1 (1984), 3–27 | MR | Zbl
[3] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[4] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR
[5] Morita Y., J. Fac. Sci. Univ. Tokyo, 22:2 (1975), 255–266 | MR | Zbl
[6] Dwork B., Lectures on $p$-adic differential equations, Springer-Verlag, N.-Y., 1982 | MR | Zbl
[7] Gross B., Koblitz N., Ann. of Math., 109:3 (1979), 569–581 | DOI | MR | Zbl
[8] Deligne P., Lecture Notes in Math., 900, Springer-Verlag, Berlin, 1982, 9–100 | DOI | MR