Asymptotic completeness for a particle-Fermi-gas system
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 451-456
Cet article a éte moissonné depuis la source Math-Net.Ru
A quantum particle interacting locally with the Fermi gas on the lattice $Z^\nu$ is considered. Existence and invertibility of the Moller morphisms is proved. As a consequence, unitary equivalence of free and perturbed dynamics is obtained.
@article{TMF_1987_71_3_a14,
author = {A. Sh. Domnenkov},
title = {Asymptotic completeness for {a~particle-Fermi-gas} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {451--456},
year = {1987},
volume = {71},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a14/}
}
A. Sh. Domnenkov. Asymptotic completeness for a particle-Fermi-gas system. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 451-456. http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a14/
[1] Botvich D. D., Malyshev V. A., Commun. Math. Phys., 91 (1983), 301–312 | DOI | MR | Zbl
[2] Presutti E., Synai Y. G., Soloveichik M. R., Statistical Physics and Dynamical Systems, eds. Fritz J., Jaffe A., Szäsz D., Birkhäuser, N. Y., 1985 | MR
[3] Malyshev V. A., Nicolaev I. N., Terlecky Yu. A., J. Stat. Phys., 40:1 (1985), 133–146 | DOI | MR | Zbl
[4] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, Springer, Berlin–Heidelberg–New York, 1981 | MR | Zbl
[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR