Exactly solvable model of phase transitions
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 441-450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exactly solvable model is studied which shows the phase transition taking into account only interaction between fluctuations with equal and oppositely directed momenta. Critical and tricritical behaviour influence of frozen-in impurities on the phase transition is studied and it is shown that in the narrow region proportional to the impurity concentration the phase transition is smeared.
@article{TMF_1987_71_3_a13,
     author = {Yu. M. Ivanchenko and A. A. Lisyanskii and A. E. Filippov},
     title = {Exactly solvable model of phase transitions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--450},
     year = {1987},
     volume = {71},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a13/}
}
TY  - JOUR
AU  - Yu. M. Ivanchenko
AU  - A. A. Lisyanskii
AU  - A. E. Filippov
TI  - Exactly solvable model of phase transitions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 441
EP  - 450
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a13/
LA  - ru
ID  - TMF_1987_71_3_a13
ER  - 
%0 Journal Article
%A Yu. M. Ivanchenko
%A A. A. Lisyanskii
%A A. E. Filippov
%T Exactly solvable model of phase transitions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 441-450
%V 71
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a13/
%G ru
%F TMF_1987_71_3_a13
Yu. M. Ivanchenko; A. A. Lisyanskii; A. E. Filippov. Exactly solvable model of phase transitions. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 441-450. http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a13/

[1] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[2] Schneider T., Stoll E., Beck H., Physica, 79A (1975), 201–216 | DOI

[3] Joyce C. S., “Critical properties of spherical model”, Phase Transitions and critical phenomena, V. 2, eds. Domb C., Green M. S., Acad. Press, N. Y., 1972, 375–442 | MR

[4] Plakida N. M., Tonchev N. S., TMF, 63:2 (1985), 270–279 | MR

[5] Plakida N. M., Tonchev N. S., Kvantovye effekty v $d$-mernoi modeli strukturnogo fazovogo perekhoda, Preprint R17-85-400, OIYaI, Dubna, 1984

[6] Ivanchenko Yu. M., Lisyanskii A. A., Filippov A. E., TMF, 67:1 (1986), 143–150 | MR

[7] Ivanchenko Yu. M., Lisyanskii A. A., Filippov A. E., FTT, 26 (1984), 2524–2526

[8] Sarbach S., Schneider T., Z. Phys., B20 (1975), 399–403

[9] Fisher M. E., Rep. Progr. Phys., 30 (1967), 615–730 | DOI

[10] Lisyanskii A. A., Filippov A. E., TMF, 68:3 (1986), 425–432

[11] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Izd. 4-e, Nauka, M., 1984 | MR

[12] Khmelnitskii D. E., ZhETF, 68 (1975), 1960–1968 | MR

[13] Aharony A., Imri Y., Ma S.-k., Phys. Rev., B13 (1976), 466–473 | DOI