An equation for disentangling time-ordered exponentials with arbitrary quadratic generators
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 331-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An ordinary differential equation on the Lie matrix algebra is found by the Weyl analysis methods, which is invariant under the adjoint action of the dynamic symmetry group of the quadratic Hamiltonian. The equation can replace the operator evolution equation for the Green function.
@article{TMF_1987_71_3_a1,
     author = {V. G. Budanov},
     title = {An equation for disentangling time-ordered exponentials with arbitrary quadratic generators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {331--336},
     year = {1987},
     volume = {71},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a1/}
}
TY  - JOUR
AU  - V. G. Budanov
TI  - An equation for disentangling time-ordered exponentials with arbitrary quadratic generators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 331
EP  - 336
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a1/
LA  - ru
ID  - TMF_1987_71_3_a1
ER  - 
%0 Journal Article
%A V. G. Budanov
%T An equation for disentangling time-ordered exponentials with arbitrary quadratic generators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 331-336
%V 71
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a1/
%G ru
%F TMF_1987_71_3_a1
V. G. Budanov. An equation for disentangling time-ordered exponentials with arbitrary quadratic generators. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 331-336. http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a1/

[1] Berezin F. A., UFN, 132:3 (1980), 497–589 ; Березин Ф. А., Шубин М. А., Уравнение Шредингера, МГУ, М., 1983 | DOI | MR | MR

[2] Marinov M. S., Phys. Rep. C, 60:1 (1980), 1–57 | DOI | MR

[3] Budanov V. G., TMF, 61:3 (1984), 347–363 ; 64:1 (1985), 17–31 | MR | MR

[4] Perelomov A. M., UFN, 123:1 (1977), 23–56 | DOI

[5] Postnikov M. M., Lektsii po geometrii. Semestr V. Gruppy i algebry Li, Nauka, M., 1982 | MR

[6] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[7] Fomenko A. T., Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy, Izd-vo MGU, M., 1983 | Zbl