An equation for disentangling time-ordered exponentials with arbitrary quadratic generators
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 331-336
Cet article a éte moissonné depuis la source Math-Net.Ru
An ordinary differential equation on the Lie matrix algebra is found by the Weyl analysis methods, which is invariant under the adjoint action of the dynamic symmetry group of the quadratic Hamiltonian. The equation can replace the operator evolution equation for the Green function.
@article{TMF_1987_71_3_a1,
author = {V. G. Budanov},
title = {An equation for disentangling time-ordered exponentials with arbitrary quadratic generators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {331--336},
year = {1987},
volume = {71},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a1/}
}
TY - JOUR AU - V. G. Budanov TI - An equation for disentangling time-ordered exponentials with arbitrary quadratic generators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 331 EP - 336 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a1/ LA - ru ID - TMF_1987_71_3_a1 ER -
V. G. Budanov. An equation for disentangling time-ordered exponentials with arbitrary quadratic generators. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 3, pp. 331-336. http://geodesic.mathdoc.fr/item/TMF_1987_71_3_a1/
[1] Berezin F. A., UFN, 132:3 (1980), 497–589 ; Березин Ф. А., Шубин М. А., Уравнение Шредингера, МГУ, М., 1983 | DOI | MR | MR
[2] Marinov M. S., Phys. Rep. C, 60:1 (1980), 1–57 | DOI | MR
[3] Budanov V. G., TMF, 61:3 (1984), 347–363 ; 64:1 (1985), 17–31 | MR | MR
[4] Perelomov A. M., UFN, 123:1 (1977), 23–56 | DOI
[5] Postnikov M. M., Lektsii po geometrii. Semestr V. Gruppy i algebry Li, Nauka, M., 1982 | MR
[6] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | MR | Zbl
[7] Fomenko A. T., Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy, Izd-vo MGU, M., 1983 | Zbl